

University of South Florida Scholar Commons

Graduate Theses and Dissertations

Graduate School

January 2013

The Translational Machinery as a Target for Radiosensitization

Thomas John Hayman University of South Florida, thayman@health.usf.edu

Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the <u>Oncology Commons</u>

Scholar Commons Citation

Hayman, Thomas John, "The Translational Machinery as a Target for Radiosensitization" (2013). *Graduate Theses and Dissertations*. http://scholarcommons.usf.edu/etd/4690

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.

The Translational Machinery as a Target for Radiosensitization

by

Thomas J. Hayman

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Molecular Medicine College of Medicine University of South Florida

Co-Major Professor: Philip J. Tofilon, Ph.D. Co-Major Professor: Robert J. Deschenes, Ph.D. Michael J. Barber, D.Phil. Srikumar P. Chellappan, Ph.D. Peter G. Medveczky, M.D.

> Date of Approval: May 15, 2013

Keywords: eIF4E, S6K, mTOR, mRNA Translation, Radiosensitization

Copyright © 2013, Thomas J. Hayman

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Phil Tofilon for the scientifically rigorous training that he has provided me over the past several years. This training will provide an excellent foundation for my continuing scientific career. Secondly, I would like to thank the other members of my lab, as their discussions and guidance have been extremely valuable to me. Furthermore, I would like to thank the Radiation Oncology Branch at the National Cancer Institute for providing me with a great environment to learn and grow as a scientist. The University of South Florida Morsani College of Medicine has been vital in helping me to achieve the goal of obtaining a Ph.D. My family's support has truly been a blessing and has allowed me to persevere. Lastly, I would like to thank Ashley Loveless, who has been my foundation throughout this journey.

TABLE OF CONTENTS

List of Tables		iii
List of Figures	5	iv
Abstract		vi
Chapter 1:	Introduction	1
Chapter 2:	Methods	7
Chapter 3:	Translation Initiation Factor eIF4E is a Target for Tumor Cell	10
	Radiosensitization	13
Note to) Reader	13
Abstra	ct	13
Introdu	iction	14
Results	5	15
Discus	sion	28
Chapter 4:	Ribosomal Protein S6 Kinase 1 as a Determinant of Cellular	
	Radiosensitivity	31
Abstra	ct	31
Introdu	iction	31
Results	5	34
Discus	sion	37
Chapter 5:	Allosteric versus ATP-Competitive mTOR Inhibition and	
	Radiosensitivity	40
Note to	Reader	40
Abstra	ct	40
Introdu	iction	41
Results	5	42
Discus	sion	54
Chapter 6:	ATP-Competitive mTOR Inhibition by the Clinically Available mTOR Inhibitor INK128 Enhances In Vitro and In Vivo	
	Radiosensitivity of Pancreatic Adenocarcinoma	58
Abstra	ct	58
Introduction		59
Results	5	60

Discussion		
Chapter 7:	Overall Conclusions	
References		81
Appendices		91

LIST OF TABLES

Table 1:	Functions of r	nRNAS increa	asingly bound	to eIF4E after	r irradiation	25
Table A1	:List of 1124 g	enes increasin	gly bound to	eIF4E after in	adiation	

LIST OF FIGURES

Figure 1:	Post-transcriptional regulation and radiation	4
Figure 2:	Effect of eIF4E knockdown on clonogenic cell survival	17
Figure 3:	The effects of eIF4E knockdown on cellular radiosensitivity	18
Figure 4:	Mechanism of radiosensitization by eIF4E knockdown	20
Figure 5:	The effect of radiation on eIF4E activation	22
Figure 6:	Rip Chip analysis of the effects of radiation on eIF4E mRNA clients	24
Figure 7:	Effects of ribavirin on radiosensitivity	27
Figure 8:	The effects of S6K1 knockdown on cellular radiosensitivity	35
Figure 9:	The effects of S6K1 knockdown on PDCD4 expression	36
Figure 10:	Effects of rapamycin and PP242 on mTORC1/2 activity	44
Figure 11:	The effect of radiation on mTOR activity	45
Figure 12:	Effects of mTOR inhibitors on cellular radiosensitivity	47
Figure 13:	Influence of PP242 on radiation-induced yH2AX foci	48
Figure 14:	The effects of the timing of PP242 treatment on cellular radiosensitivity	50
Figure 15:	The effects of PP242 on radiation-induced tumor growth delay	53
Figure 16:	Effects of INK128 on mTORC1/2 activity	61
Figure 17:	Effects of INK128 on cellular radiosensitivity	62
Figure 18:	Influence of INK128 on radiation-induced yH2AX foci	63

Figure 19:	The effects of INK128 treatment on mTOR activity in pancreatic tumor xenografts	66
Figure 20:	The effects of INK128 on PSN1 tumor xenograft eIF4F complex formation	68
Figure 21:	The effects of duration of mTOR inhibition on in vitro and in vivo radiosensitivity	70

ABSTRACT

Current approaches aimed at improving the efficacy of radiation as a cancer treatment modality involve the development and application of molecularly targeted radiosensitizers, a strategy that requires a thorough understanding of the fundamental processes comprising the cellular radioresponse. Recent data indicating that radiation modifies gene expression primarily through translational control rather than transcriptional events suggests that mRNA translation contributes to cell survival after irradiation. The overall goal of this project is to determine whether the regulatory/ratelimiting components of the translational machinery provide targets for tumor cell radiosensitization. The majority of translation in mammalian cells occurs in a capdependent manner and is highly dependent on eIF4E. As such, we investigated a regulatory role for eIF4E in cellular radiosensitivity. eIF4E knockdown enhanced the radiosensitivity of tumor but not normal cells. eIF4E knockdown inhibited the dispersal of radiation-induced vH2AX foci. Furthermore, radiation was found to increase the binding of >1000 unique mRNAs to eIF4E, many involved in DNA replication, recombination, and repair. S6 kinase 1 (S6K1), also an important regulatory component of the translational machinery, enhances the translation of specific mRNA subpopulations, independent from eIF4E, and mediates ribosome biogenesis. The role of S6K1 in determing cell survival after radiation was determined in several tumor cell lines

and one normal cell line. S6K1 knockdown enhanced the radiosensitivity of all 3 tumor lines. In contrast S6K1 knockdown had no effect on the cellular radiosensitivity of the one normal line tested. The mechanistic target of rapamycin (mTOR) is a critical kinase in the regulation of gene translation and has been suggested as a potential target for radiosensitization. Importantly, it plays a major role in regulating eIF4E availability as well as S6K1 activity. The radiosensitizing activities of the allosteric mTOR inhibitor rapamycin with that of the ATP competitive mTOR inhibitor PP242 were compared. Based on immunoblot analyses, whereas rapamycin only partially inhibited mTORC1 activity and had no effect on mTORC2, PP242 inhibited the activity of both mTOR containing complexes. In the two tumor cell lines evaluated, PP242 treatment 1h before irradiation increased radiosensitivity, whereas rapamycin had no effect. PP242 had no effect on the cellular radiosensitivity of a normal lung fibroblast line. PP242 exposure did not influence the initial level of γ H2AX foci after irradiation, but did significantly delay the dispersal of radiation-induced yH2AX foci. Finally, PP242 administration to mice bearing U251 xenografts enhanced radiation-induced tumor growth delay. A next generation analog of PP242, INK128, is currently undergoing analysis in clinical trials. Given our data showing ATP-competitive mTOR inhibition is a strategy for tumor radiosensitization as well as the fact that radiotherapy is a primary treatment modality for locally advanced pancreatic ductal adenocarcinoma, the effects of INK128 on pancreatic cancer radiosensitivity were determined. In three pancreatic cancer cell lines addition of INK128 immediately after radiation resulted in radiosensitization. Consistent with the effects of PP242 on other cell lines, INK128 exposure did not influence the initial level of yH2AX foci after irradiation, but did significantly delay the dispersal of radiation-

induced γ H2AX foci. Furthermore, in pancreatic tumor xenografts INK128 inhibits mTOR activity as well as cap-complex formation in a time-dependent manner. Lastly, INK128 treatment significantly prolonged the radiation-induced tumor growth delay of pancreatic tumor xenografts. In summary, the data provided in this thesis have begun to characterize the role of the translational machinery in determining the cellular response to radiation.

CHAPTER 1:

Introduction

It is estimated in 2013 that there will be approximately 1.6 million non-skin cancers diagnosed in North America (cancer.org), of which approximately 75% of these patients will receive radiotherapy at sometime during their treatment course. As radiotherapy continues to be a primary treatment modality for the majority of patients undergoing cancer therapy, the development of strategies to improve its efficacy could benefit a large number of patients. This has led to an emphasis upon the development of molecularly targeted radiosensitizers, a strategy that requires a thorough understanding of the mechanisms mediating cellular radioresponse. Along these lines, radiation-induced post-translational modifications of existing proteins (e.g. phosphorylation and ubiquitination) have been the subject of extensive investigation. These modifications have been linked causally to cellular radiosensitivity and play important roles in the DNA damage response (DDR) and signal transduction pathways. As such, these modifications have provided a rich source of potential targets for radiosensitization. Additionally, as radiation has previously been shown to induce changes in the transcription of numerous genes, the modulation of gene expression has also been thought to play a role in the cellular radioresponse. That is, similar to prokaryotes radiation-induced changes in gene expression in mammalian cells may constitute a protective or adaptive response against radiation-induced cell death. As such, it has been generally thought that defining the inducible genes as well as the mechanisms governing their expression may provide not

only novel insight into the fundamental radioresponse, but may also lead to the identification of targets for radiation sensitizers.

To examine the radiation-induced control of gene expression numerous studies have published results of various analyses of total cellular mRNA (e.g. northern, RT-PCR and microarray) in a number of normal cells and tissue as well as for tumor cell lines grown both *in vitro* and *in vivo* (1-6). However, comparison of these changes in the transcriptome reveals few commonly affected genes among the cell types evaluated or even among tumor cell lines originating from tumors of identical histologic origin. In addition, whereas these analyses accurately reflect changes in mRNA abundance, the radiation-induced changes in mRNA levels do not correlate with changes in the corresponding protein product. While there are exceptions involving individual genes (2), the majority of radiation-induced changes in mRNA abundance have not been extended to the protein level. Along these lines, Skanderová et al. directly compared radiation-induced proteins with their corresponding mRNAs and reported no correlation for the 10 proteins evaluated (7). As protein expression is the functional and operational end product of gene expression, the lack of correlation between radiation-induced changes in mRNA abundance and protein expression, as well as the established heterogeneity among the cell lines, it is difficult to assign a functional consequence to radiation-induced gene expression. Consistent with the aforementioned findings Birell et al. showed that after irradiation of yeast, there was little to no relationship between radiation radiation-induced transcriptional changes and survival after irradiation (8).

A fundamental assumption of these analyses is that radiation-induced changes in gene expression are primarily the result of modifications in transcription. However, in

2

addition to transcription, numerous post-transcriptional processes contribute to the control of gene expression. In contrast to prokaryotic cells, mammalian transcription and translation are not directly coupled, with each event confined to separate cellular compartments (nucleus versus cytoplasm; Figure 1). Consistent with this uncoupling, there is a poor correlation between changes in mRNA abundance and protein expression in eukaryotic cells exposed to a number of types of stress (9-12). Furthermore even under basal growth conditions the agreement between mRNA and protein expression profiles was shown to be at best 65% in a study paneling the NCI-60 cell lines (13). Accounting for the discrepancy between the transcriptome and the proteome is translational control (14-16), which has been shown to play an important role in regulating gene expression during such fundamental processes as embryogenesis (17), T-cell activation (18), growth factor signaling (19), and tumorigenesis (20).

More recent studies have begun to define the effects of radiation on translational control (21-22). The initiation of translation involves the recruitment of mRNAs to polyribosomes (polysomes), and as such the association of a given mRNA with polysomes can then be used as an indicator of translational activity (15). To perform global profiling of mRNAs undergoing translation (the translatome) these studies employed microarray analysis of polysome-bound mRNA after radiation in a several cell lines and these results were compared to radiation-induced changes in the transcriptome. A study from our laboratory initially focused on the U87 glioma cell line and showed that radiation affects ~10 fold more genes at the translational level than on the transcriptional level (22). Furthermore, there was no overlap between genes affected translationally and transcriptionally in U87 cells (22). Important with regards to functional consequence, a

Figure 1: Post-transcriptional regulation and radiation.

correlation between radiation-induced changes in polysome-bound mRNAs and changes in the corresponding protein product was established, with 14/16 proteins evaluated showing consistent changes in translational activity and protein expression (22). It was then further shown that radiation-induced changes in translation were similar among 3 glioma cell lines, in contrast to radiation-induced changes in the transcriptome (22).

A second study published by our laboratory extended the results of the previously mentioned study by profiling radiation-induced translational changes in a panel of 18 cell lines, comprised of both tumor and normal cell lines (21). In contrast to changes in the transcriptome, radiation-induced translational changes clustered according to the tissue of origin (e.g. pancreatic carcinoma cell lines versus glioma cell lines). Network analyses showed that the mRNAs affected at the translational level belonged to distinct functional categories and were not a random collection of genes (21). Furthermore, many of these functional categories appeared to histology-specific. Importantly, as the potential to exploit differences in tumor and normal cells is of critical importance for therapeutic application, many of the changes were exclusive to tumor or normal cells (21). Consistent with our results another laboratory has recently published analysis of polysome-bound mRNA and has shown radiation to affect the translation of numerous mRNAs that are functionally related (23). Although translational control of gene expression appears to be a component of the cellular radioresponse, whether specific molecules of the translational machinery are determinants of the cellular radiosensitivity has yet to be determined, and is the subject of this thesis.

There are numerous processes involved in the post-transcriptional control of gene expression (e.g. mRNA splicing, export, stability, and translation initiation) (24). Each of

www.manaraa.com

these processes can operate independently to regulate gene expression at the posttranscriptional level. RNA-binding proteins (RBPs), of which there are > 700 in humans, play important roles in the regulation of each of the post-transcriptional processes (24). Clearly, the mechanisms mediating the translational control of gene expression are extremely complex with each step/event subject to regulation by environmental signals including potentially radiation. In fact, radiation has been shown to influence the components of the post-transcriptional gene expression infrastructure as well as the signaling pathways involved in their regulation (25-27). These processes, for the most part, culminate in translation initiation and ribosome binding, the final and rate limiting steps in mRNA translation (Figure 1) (28). Among the proteins regulating translation initiation are eIF4E and S6K (29). Furthermore, the mechanistic target of rapamycin (mTOR), which plays a major role in determining gene translation in response to environmental and oncogenic stress, regulates the availability of eIF4E and activity of S6K (29). Thus, to determine whether radiation-induced translation control of gene expression influences radiosensitivity, these specific components of the translational machinery were the focus of this thesis.

CHAPTER 2:

Methods

Cell lines and treatments: MDA-MB-231 (breast adenocarcinoma), A549 (lung adenocarcinoma) DU145 (prostate adenocarcinoma), and MRC9 (normal lung fibroblasts) were obtained from American Type Culture Collection (ATCC). U251 (glioma) cells were obtained from the Division of Cancer Treatment and Diagnosis Tumor Repository (DCTD), National Cancer Institute (NCI). Miapaca-2, Panc1, and PSN1 (all pancreatic cancer cell lines) were kind gifts from Dr. Deborah Citrin's laboratory. The cell lines were maintained in DMEM (MDA-MB-231 and U251), RPMI (A549, Miapaca-2, Pancl, and PSN1), or MEM (DU145 and MRC9) media supplemented with 10% FBS (Invitrogen, Carlsbad CA). ATCC employs short tandem repeat DNA fingerprinting, karyotyping, and cytochrome C oxidase to authenticate cell lines. Primary human mammary epithelial cells (HMEC) were obtained from GIBCO in 2010 and maintained in complete Mammary Epithelial Growth Medium (Lonza). All cells were cultured less than 6 months after resuscitation. Cell cultures were maintained in an atmosphere of 5% CO₂/95% air at 37°C. Ribavirin (Sigma-Aldrich), PP242 (Sigma-Aldrich or Chemdea) and rapamycin (EMD-Biochemicals) were dissolved in dimethyl sulfoxide. Cell cultures were irradiated using a 320 X-ray source (Precision XRay Inc.) at a dose rate of 2.3 Gy/min.

siRNA Transfection: A pool of four siRNA duplexes (SMARTpool) targeted to eIF4E or S6K1 and a non-targeted siRNA pool (scramble) were purchased from

www.manaraa.com

Dharmacon Inc (Lafayette, CO). Transfection with the respective siRNA pool was carried out with cell cultures at 60-70% confluency using Dharmafect 1 transfection reagent (Dharmacon) per manufacturer's protocol. All experiments were carried out 72 h post transfection.

Clonogenic Survival Assay: To evaluate radiosensitivity, cells were plated at clonal density in 6-well plates, allowed to attach, followed by the specified drug and/or radiation treatment protocol. 10 to 14 days after seeding, plates were stained with 0.5% crystal violet, the number of colonies determined, and the surviving fractions were calculated. Radiation survival curves were generated after normalizing for the cytotoxicity induced by eIF4E knockdown, S6K1 knockdown, rapamycin, PP242, or INK128 treatment alone. Dose enhancement factor defined as the ratio of the dose of radiation required to reduce surviving fraction to 0.1 in untreated cells to the dose of radiation required to reduce surviving fraction to 0.1 in treated cells. Data presented are the mean \pm SEM from at least 3 independent experiments.

Immunoblotting and antibodies: Cells were lysed in 50mM Tris-HCl (pH 7.5), 150mM NaCl, 2mM EDTA, 2mM EGTA, 25mM NaF, 25mM β -glycerophosphate, 0.2% Triton X-100, 0.3% NP-40, and 0.1mM sodium orthovanadate (for cytoplasmic proteins), or 50mM Tris-HCL (ph 8.0), 1% SDS, and 10mM EDTA (for nuclear proteins); supplemented with 1x phosphatase inhibitor cocktails II and III (Sigma-Aldrich), and 1x HALT protease inhibitor cocktail (Thermo Scientific) for 15 minutes on ice. Total protein was quantified using BCA protein assay (Thermo Scientific); separated by SDS-PAGE; transferred to PVDF (Millipore) and probed with the indicated antibodies. Bands were visualized using Pierce ECL Western Blotting Substrate (Thermo Scientific). Anti-

eIF4E, anti-CHK1, anti-4E-BP-1, anti-phospho-eIF4E S209, anti-phospho-4E-BP-1 T37/46, anti-phospho-4E-BP-1 S65, anti-AKT, and anti-phospho-AKT s473 antibodies were purchased from Cell Signaling Technology. Anti-β-actin and anti-eIF4G antibodies were obtained from Sigma-Aldrich and BD Biosciences, respectively. Anti-Rad51 and anti-Rad17 antibodies were purchased from Santa Cruz Biotechnologies. Donkey-anti-rabbit and sheep-anti-mouse Horseradish Peroxidase conjugated secondary antibodies were purchased from GE Healthcare.

Cell Cycle Analysis: Cell cycle phase distribution was determined by flow cytometric analysis. Cells were trypsinized, fixed with 70% ethanol, stained with Guava Cell Cycle Reagent (Millipore), and analyzed with the Guava EasyCyte flow cytometer (Millipore).

Apoptotic Cell Death: Cells undergoing apoptosis were quantified according to annexin V staining (Annexin V Apoptosis Detection Kit, BD Biosciences). Briefly, for each treatment condition cells were resuspended in 1x Annexin V Binding Buffer and incubated with Annexin V-Cy5 antibody in the dark at room temperature. Hoechst 33258 was added for live/dead discrimination and samples analyzed by flow cytometry (BD Biosciences LSRII flow cytometer).

Immunofluorescent analysis of γ H2AX foci: To visualize foci, cells, grown in chamber slides, were fixed with 4% paraformaldehyde, permeabilized with 0.1% Triton X-100, and blocked with 1% bovine serum albumin (BSA) in PBS containing 5% goat serum. The slides were incubated with antibody to phospho-H2AX (Millipore) followed by incubation with goat-anti-mouse-Alexa488 (Invitrogen) and mounted with Prolong

gold anti-fade reagent containing 4', 6-diamidino-2-phenylindole (Invitrogen) to visualize nuclei. Cells were analyzed on a Zeiss upright fluorescent microscope.

Mitotic Catastrophe: Cells, grown in chamber slides, were fixed with a 10% neutral buffered formalin solution and incubated with antibody to α -tubulin (Sigma-Aldrich) followed by incubation with goat anti-mouse with Alexa-488 antibody and mounted with Prolong gold anti-fade reagent containing 4', 6-diamidino-2-phenylindole. Cells with nuclear fragmentation, defined as the presence of two or more distinct nuclear lobes within a single cell were classified as being in mitotic catastrophe.

Cap-Binding Assay: eIF4F cap complex formation was measured using m⁷-GTP batch chromatography (30). Briefly, cells were lysed in 20mM Tris-HCl (pH 7.4), 150mM NaCl, 1mM EDTA, 1mM EGTA, 1mM β -glycerophosphate, 1mM sodium orthovanadate, 1% Triton X-100, 0.2mM PMSF, 1x phosphatase inhibitor cocktails II and III (Sigma-Aldrich), and 1x HALT protease inhibitor cocktail (Thermo Scientific) for 15m on ice. 400µg of lysate were pre-cleared for 1h at 4°C then incubated with m⁷-GTP Sepharose 4B beads (GE Healthcare) overnight at 4°C. Beads were washed three times with lysis buffer; bound protein was eluted, denatured, and then separated using SDS-PAGE followed by immunoblotting for eIF4G and eIF4E.

RIP-Chip and Microarray Analysis: The RIP-Chip kit and anti-eIF4E antibody were obtained from MBL International (Woburn, Ma); the procedure was performed in biological triplicate according to manufacturer's protocol. Briefly, 10⁷ cells were washed followed by lysis and isolation of the cytoplasmic fraction, which was then pre-cleared with Protein-A sepharose beads at 4°C for 1h. The lysates were then split into equal parts; half was incubated with eIF4E conjugated Protein-A sepharose beads and half was

incubated with IgG conjugated Protein-A sepharose beads (negative control). The RNA associated with each type of bead was then eluted and isolated.

The isolated RNA was amplified using GeneChip 3' IVT Express Kit (Affymetrix) and hybridized to GeneChip Human genome U133A 2.0 array chips (Affymetrix) per manufacturer's protocol. Using Affymetrix Expression Console, Mas5 normalization was performed on all data sets. An expression cutoff of p < 0.05 was implemented to filter all data. The negative control expression values (IgG) were subtracted from their respective sample counterparts on a probeset basis; the three replicates were then averaged. Probesets that had fold increase > 1.5 (radiation to control) or went from an expression value less than or equal to 0 before radiation to positive expression value after radiation (not bound to bound) were then further analyzed by Ingenuity Pathway Analysis (IPA). IPA curates a database that is defined by interactions reported in the literature. Gene lists are uploaded to IPA and network analysis was performed. The IPA analysis was performed using the IPA database available in October-December 2011. The data have been deposited in NCBI's Gene Expression Omnibus (31) and are accessible through GEO Series accession number GSE36179.

In vivo Tumor Growth Delay: Eight to ten-week-old female athymic nude mice (NCr *nu/nu*; NCI Animal Production Program, Frederick, MD) were used in these studies. Animals are caged in groups of 5 or less and fed animal chow and water ad libitum. A single cell suspension of U251 (10^7 cells), Miapaca-2 (5 x 10^6 cells), or PSN1 (5 x 10^6 cells) was injected subcutaneously into the right hind leg. When tumors grew to a mean volume of approximately 210 mm³ (U251) or 180 mm³ (PSN1) mice were

randomized into four groups: vehicle treated controls (5% N-Methylpyrrolidone, 15% Polyvinylpyrrolidone, and 80% water), drug treated (PP242 or INK128), radiation (at dose specified for specific experiment), or drug/radiation combination. The treatment protocols are described in detail in the results sections of their respective chapters. Radiation was delivered locally using a Pantak X Ray source with animals restrained in a custom designed lead jig. To obtain tumor growth curves, perpendicular diameter measurements of each tumor were measured 2 to 3 times per week with a digital caliper and volumes were calculated using a formula $(L \times W^2)/2$. Data are expressed as mean \pm SEM tumor volume. Each experimental group contained between 5-7 mice. All animal studies were conducted in accordance with the principles and procedures outlined in the NIH Guide for Care and Use of Animals.

CHAPTER 3:

Translation Initiation Factor eIF4E is a Target for Tumor Cell Radiosensitization

Note to Reader

Portions of the results have been previously published (Hayman TJ, Williams ES, Jamal M, Shankavaram UT, Camphausen K, and Tofilon PJ (2012). Translation initiation factor eIF4E is a target for tumor cell radiosensitization. *Cancer Res* **72**, 2362-2372.) and are utilized with permission of the publisher. Eli Williams helped design and complete experiments; Muhammad Jamal helped with data acquisition; Uma Shankavaram assisted with bioinformatics analysis; Kevin Camphausen and Philip Tofilon helped to design and oversee project.

Abstract

A core component in the cellular response to radiation occurs at the level of translational control of gene expression. Because a critical element in translation control is the availability of the initiation factor eIF4E, which selectively enhances the capdependent translation of mRNAs, we investigated a regulatory role for eIF4E in cellular radiosensitivity. eIF4E knockdown enhanced the radiosensitivity of tumor cell lines but not normal cells. Similarly, pharmacological inhibition of eIF4E with ribavirin also enhanced tumor cell radiosensitivity. In tumor cells eIF4E attenuation did not affect cell cycle phase distribution or radiation-induced apoptosis, but it delayed the dispersion of radiation-induced mitotic

catastrophe. Radiation did not affect 4E-BP1 phosphorylation or cap-complex formation but it increased eIF4E binding to >1000 unique transcripts including many implicated in DNA replication, recombination and repair. Taken together, our findings suggest that eIF4E represents a logical therapeutic target to increase tumor cell radiosensitivity.

Introduction

In eukaryotic cells the majority of translation occurs in a cap-dependent manner, which involves eIF4E binding to the 7-methyl guanosine (m⁷G) cap on the 5' end of an mRNA resulting in the recruitment of eIF4G and eIF4A to form the eIF4F initiation complex and subsequently ribosome binding (32). This process is a final and rate-limiting step in translation initiation and is highly dependent on the availability of eIF4E. Elevated levels of eIF4E preferentially enhance the translation of mRNAs with long, highly structured 5' untranslated regions (UTRs), which tend to encode proteins related to cell proliferation and survival such as c-myc, Bcl2, FGF-2, and survivin (33-34). Moreover, eIF4E also promotes the nucelocytoplasmic shuttling of select mRNAs such as cyclin D and ornithine decarboxylase (ODC) with their increased cytoplasmic levels leading to increased translation (33-34). Thus, via at least 2 mechanisms eIF4E plays a critical role in the regulating gene translation.

At the cellular level elevated eIF4E has been implicated in oncogenesis (35). Overexpression of eIF4E has been shown to drive the malignant transformation of primary human mammary epithelial cells (36) and immortalized rodent cells (37) with ectopic expression of eIF4E in animal models increasing the incidence of a variety of tumor types (38). Evaluation of biopsy and surgical specimens indicates that eIF4E expression is frequently elevated in a number of human cancers including breast,

prostate, head and neck, and lung (33, 39). Increased eIF4E levels have also been associated with malignant progression (40) as well as poor therapeutic outcome (41-42). Finally, in preclinical models inhibition of eIF4E activity results in cytotoxicity for tumor but not normal cells (42-43). Given eIF4E's function in the translational control of gene expression and data suggesting that it contributes to the neoplastic phenotype, we have defined the consequences of eIF4E knockdown on the radiosensitivity of tumor and normal cell lines. The data presented here indicate loss of eIF4E activity selectively enhances tumor cell radiosensitivity through an inhibition of DNA double strand break repair. In addition, radiation is shown to significantly increase the number of mRNAs

Results

To determine whether eIF4E plays a role in determining radiosensitivity 3 tumor lines (MDA-MB-231, breast carcinoma; DU145, prostate carcinoma; A549, lung carcinoma) and 2 normal cell lines (HMEC mammary epithelial and MRC9 lung fibroblasts) were evaluated using the clonogenic survival assay. Each cell line was treated with siRNA specific to eIF4E or non-targeted siRNA; 72h after transfection cultures seeded at clonal density for survival analysis. As shown in Figure 2A, siRNA to eIF4E reduced eIF4E protein levels significantly when compared to non-targeted siRNA. The effects of eIF4E knockdown alone on the survival of each cell line are shown in Figure 2B. eIF4E knockdown significantly reduced clonogenic survival of all three tumor lines. As compared to the tumor cells, eIF4E knockdown induced significantly less cytotoxicity in the normal cell lines. These results are consistent with previous reports showing that tumor cells are more dependent on eIF4E for survival than normal cells (43-44).

15

The effects of eIF4E knockdown on cellular radiosensitivity are shown in Figure 3. For this study cells were treated as described above, trypsinized and irradiated 6h after seeding. Treatment with siRNA to eIF4E resulted in an increase in the radiosensitivity of each of the 3 tumor cell lines as compared to non-targeted siRNA (Figure 3A-C). The dose enhancement factors at a surviving fraction of 0.1 (DEFs) for MDA-MB-231, DU145, and A549 were 1.34, 1.24, and 1.44, respectively. The same experiment was performed on the two normal cell lines (Figure 3D-E). In contrast to the tumor cell lines, eIF4E knockdown had no effect on the radiosensitivity of the two normal cell lines. These results suggest that eIF4E contributes to survival after irradiation of tumor but not normal cells.

To investigate the mechanism responsible for the tumor cell radiosensitization induced by eIF4E knockdown we focused on MDA-MB-231 cells. Given that eIF4E has been reported to influence translation of a number of proteins involved in cell cycle regulation (45), a reduction in eIF4E levels could result in cell cycle phase redistribution. Because such an effect can be a critical factor in determining radiosensitivity, flow cytometry was used to determine the cell cycle distribution in MDA-MB-231 cells after eIF4E knockdown. As shown in Figure 4A the cell cycle phase distribution pattern was not significantly altered at 72h after exposure to eIF4E siRNA as compared to nontargeted siRNA. These results indicated that redistribution of cells into a radiosensitive phase of the cell cycle does not account for eIF4E knockdown-mediated enhancement in radiation-induced cell killing. eIF4E knockdown has been shown to induce apoptosis in breast cancer cell lines (46). To determine whether the increase in radiosensitivity resulting from eIF4E knockdown was due to an enhancement of radiation-induced

Figure 2: Effect of eIF4E knockdown on clonogenic cell survival. Cultures were transfected with siRNA specific to eIF4E (eIF4E KD) or non-targeted siRNA (Scramble). A) Representative immunoblots from each cell line showing extent of eIF4E protein reduction 72h after transfection. B) 72h post-transfection cells were plated at specified densities and colony-forming efficiency was determined 10-14 days later. Surviving fractions for eIF4E KD cells were calculated after normalizing to the surviving fraction obtained for cells receiving the scrambled siRNA. Values shown represent the means \pm SE for 3-4 independent experiments. *p < 0.04 according to Student's *t* test (all tumor cell lines compared to HMEC).

Figure 3: The effects of eIF4E knockdown on cellular radiosensitivity. A) MDA-MB-231, B) A549, C) DU145, D) MRC9, and E) HMEC cells were transfected with non-targeted siRNA (Scramble) or siRNA specific for eIF4E (eIF4E KD). 72h post-transfection cells were plated, allowed to attach for 6h, and irradiated. Colony-forming efficiency was determined 10-14 days later and survival curves were generated after normalizing for cell killing from siRNA alone. DEFs were calculated at a surviving fraction of 0.1. Values shown represent the mean <u>+</u> SE for 3-4 independent experiments. * p < 0.05; ** p < 0.1 according to Student's *t* test.

apoptosis, we determined Annexin V staining at 24 and 48h after exposure to 6 Gy for cells exposed to siRNA to eIF4E and non-target siRNA. As expected for a solid tumor cell line, radiation alone did not induce a significant apoptotic response, and this response was not significantly enhanced with eIF4E knockdown (data not shown). These results indicate that apoptosis is not the mechanism of cell death following radiation in eIF4E deficient cells.

The critical lesion responsible for radiation-induced cell death is the DNA double strand break (DSB). Because γ H2AX foci correspond to radiation-induced DSBs and their dispersal correlates with DSB repair (47-48), the effects of eIF4E knockdown on radiation-induced γ H2AX were evaluated in MDA-MB-231 cells (Figure 4B). At 1h after exposure to 2 Gy no difference in foci levels was detected between control cells (non-targeted siRNA) and cells in which eIF4E was knocked down, suggesting that eIF4E levels have no effect on the initial level of radiation-induced DSBs. However, at 6 and 24h after irradiation (2 Gy) the number of γ H2AX foci remaining in the eIF4E knockdown cells was significantly greater than in control cells. Additionally, a significant level of γ H2AX foci retention was observed in eIF4E deficient cells 24 h after 4 Gy when compared to non-targeted siRNA treated cells. These data suggest that eIF4E knockdown results in an inhibition of radiation-induced DNA DSB repair.

Given the apparent inhibition of DSB repair and no increase in radiation-induced apoptosis after eIF4E knockdown, we hypothesized that the mechanism of cell death involved an increase in radiation-induced mitotic catastrophe. Cells with nuclear fragmentation, defined as the presence of two or more distinct nuclear lobes within a single cell, were classified as being in mitotic catastrophe. As shown in Figure 4C, eIF4E

Figure 4: Mechanism of radiosensitization by eIF4E knockdown. In the following experiments MDA-MB-231 cells were transfected with siRNA specific to eIF4E (eIF4E KD) or non-targeted siRNA (Scramble). All experiments were carried out 72 hours post-transfection. A) Cell cycle phase distribution was determined. Values represent the mean of three independent experiments. B) Cells were irradiated with 2 or 4Gy and collected at the specified time; γ H2AX foci were counted in at least 50 cells per condition. Values shown represent the means \pm SE for 3 independent experiments, *p < 0.04 according to Student's *t* test (eIF4E KD compared to scramble). C) Cells were irradiated (2 Gy) and collected at the specified time points. Cells were classified as being in mitotic catastrophe by the presence of nuclear fragmentation, which was defined as a single cell containing two or more distinct nuclear lobes. At least 50 cells per condition were scored. Values represent the mean \pm SE for 3 independent experiments. *p< 0.04

knockdown resulted in a significant increase in the percentage of cells undergoing mitotic catastrophe at 48 and 72h after exposure to 2 Gy. These results suggest the increase in radiosensitivity following eIF4E knockdown involves the inhibition of DSB repair after radiation, which then contributes to an increase in the number of cells undergoing mitotic catastrophe.

A critical regulator of eIF4E is 4E-BP1, which binds to eIF4E preventing its interaction with eIF4G and subsequently eIF4F complex formation (49). Phosphorylation of 4E-BP1 releases eIF4E resulting in eIF4F formation and capdependent translation (28); it has been reported that exposure of normal human cell lines to 8 Gy induces 4E-BP1 phosphorylation (25). However, exposure of MDA-MB-231 cells to 2 Gy under conditions used for clonogenic survival analysis (Figures 1-2) did not increase 4E-BP phosphorylation (Figure 5A), with densitometry shown in Figure 5B. Post-translational activation of eIF4E via phosphorylation at S209 has also been shown to influence eIF4E activity (50); radiation had no effect on eIF4E phosphorylation (Figure 5A). m^{7} -GTP batch chromatography is a standard approach for assessing eIF4F capcomplex formation (25, 30). Consistent with the lack of effect on 4E-BP1 and eIF4E phosphorylation, radiation had no effect on cap-complex formation, as evidenced by the lack of a change in bound eIF4G levels (Figure 5B). These results suggest that radiation does not increase the overall activity of eIF4E or cap-dependent translation initiation in general.

It is important to emphasize that eIF4E binding to a mRNA exists downstream of a multitude of complex post-transcriptional changes of which many are subject to regulation by radiation (as noted in Introduction). To further investigate the role of

Figure 5: The effect of radiation on eIF4E activation. A) MDA-MB-231 cells were irradiated (2 Gy) and collected at the specified times and subjected to immunoblot analysis. Actin was used as a loading control. B) Densitometric quantitation of phosphor:total 4E-BP1 levels from immunoblot in Panel A. C) m⁷-GTP affinity chromatography was performed on MDA-MB-231 cells that were irradiated and collected 1h after 2 Gy, and compared to unirradiated counterparts. m⁷-GTP bound and unbound proteins (flow through) were resolved via SDS-PAGE followed by immunoblot analysis. eIF4E was used as a loading control. Blots are representative of two independent experiments.

eIF4E in mediating these post-transcriptional changes induced by radiation, we determined whether radiation influences the mRNAs bound to eIF4E using RIP-Chip analysis (RNA-Binding protein immunoprecipitation followed by microarray analysis of the bound mRNAs). In this experiment, MDA-MB-231 cells were irradiated (2 Gy), 6h later cytoplasmic lysates were collected and eIF4E was immunoprecipitated. RNA was then eluted from the immunoprecipitated eIF4E and subjected to microarray analysis, which was compared to the same process performed on unirradiated cells. In this analysis irradiation was found to increase the eIF4E binding of 1124 unique transcripts (either fold increase > 1.5 or not bound to bound as described in Materials in Methods). The full list of genes is shown in Table A1 (Appendices). These transcripts were then subjected to Ingenuity Pathway Analysis (IPA), which distributes genes into networks defined by known interactions and then matches these networks with specific biologically significant pathways. The top ten biological functions associated with the eIF4E bound mRNAs are shown in Figure 6A. The specific functions of the genes contained within the DNA Replication, Recombination, and Repair category are further delineated (Figure 6B) and shown to encompass many aspects of the DNA damage response, including DSB repair and checkpoint control. To illustrate the interactions between the mRNA whose binding to eIF4E was affected by radiation, the top ten networks and their associated functions are shown in Table 1. Whereas there are numerous functions associated with these networks, of particular interest with respect to radiosensitivity is Network 4 (Figure 6C), which includes genes associated with DNA Replication, Recombination and Repair. Notably, this network contains several hub proteins: Rad17, Rad51, and CHEK1 each of which influences several other proteins. Network 6, which involves genes participating

Figure 6: Rip Chip analysis of the effects of radiation on eIF4E mRNA clients. MDA-MB-231 cells were irradiated (2 Gy) and collected 6 hours later. eIF4E was immunoprecipitated, RNA bound to eIF4E was isolated and subjected to microarray analysis and mRNAs whose binding to eIF4E after irradiation were classified using IPA. A) Left panel: top ten biological functions (containing 100 or more genes) of the mRNAs whose binding to eIF4E was increased by radiation; right panel: the biological functions of the mRNAs (with greater than 10 genes) within the DNA Replication, Recombination, and Repair category are further delineated. B) Network 4 is shown with dark red indicating not bound to bound and lighter red indicating fold increase ≥ 1.5 . C) Network 6 is shown with dark red indicating not bound to bound and lighter red indicating fold increase ≥ 1.5 . D) Immunoblot analysis of DNA Damage Response related proteins predicted by RIP-Chip analysis to be induced by radiation. MDA-MB-231 cells were irradiated (6 Gy) and collected at the specified times. Actin was used as a loading control. Blots are representative of two independent experiments.

Table 1: Functions of mRNAs increasingly bound to eIF4E after irradiation

(2Gy 6	Functions associated with the top ten networks for genes that were increasingly bound to eIF4E after radiation (2Gy 6h) in MDA-MB-231 cells.			
ID	Score	Focus Molecules	Top Functions	
1	46	33	Genetic Disorder, Skeletal and Muscular Disorders, Neurological Disease	
2	44	33	Cancer, Cellular Movement, Connective Tissue Development and Function	
3	44	32	Cancer, Infectious Disease, Respiratory Disease	
4	42	31	DNA Replication, Recombination, and Repair, Cell Cycle, Gene Expression	
5	39	30	Cellular Function and Maintenance, Cellular Compromise, Tissue Development	
6	39	30	RNA Post-Transcriptional Modification, Dermatological Diseases and Conditions, Genetic Disorder	
7	37	29	Post-Translational Modification, Cellular Movement, Cell Cycle	
8	35	28	Amino Acid Metabolism, Small Molecule Biochemistry, Cellular Assembly and Organization	
9	33	27	Post-Translational Modification, Protein Degradation, Protein Synthesis	
10	32	27	Endocrine System Development and Function, Lipid Metabolism, Molecular Transport	

in *RNA post-transcriptional processing* is shown in Figure 6D; it also includes several hub proteins (e.g., ELAVL1, snRNP, and PRPF4). This network illustrates eIF4E's capacity to modulate the post-transcriptional regulation of gene expression both directly, as an RNA Binding Protein (RBP), and indirectly through its influence on other proteins involved in post-transcriptional mRNA processing. The data presented in Figure 6 indicate that genes targeted by eIF4E after irradiation are not a random collection, but instead are functionally related mRNA subsets.

Given eIF4E's role in cap-dependent translation, an increase in the binding of a given mRNA to eIF4E would be expected to result in an increase in its corresponding protein product. Thus, to investigate the functional significance of the RIP-Chip analysis, we determined the effects of radiation on the levels of three of the hub proteins from Network 4 (CHK1, Rad17, and Rad51), proteins with established roles in the DNA damage response (51-53). MDA-MB-231 cells were irradiated (6 Gy) and collected for protein analysis at times out to 24h. As shown in Figure 6E, the levels of CHK1, Rad17, and Rad51 were increased after irradiation, consistent with a correlation between the mRNAs whose binding to eIF4E was increased after irradiation and the increase in their corresponding protein.

Because the data presented above suggest that eIF4E may serve as a target for radiosensitization, we determined the effects of ribavirin on the radiosensitivity of MDA-MD-231 cells. Whereas initially described as an anti-viral therapy, recent laboratory studies have shown that ribavirin inhibits eIF4E activity (44, 54) providing a basis for clinical trials as an anti-neoplastic treatment. To test whether pharmacological inhibition of eIF4E results in similar radiosensitization to eIF4E knockdown, MDA-MB-231 cells

Figure 7: Effects of ribavirin on radiosensitivity. MDA-MB-231 cells were plated for clonogenic survival analysis and treated with 50 μ M ribavirin for 1h, followed by radiation. Ribavirin was left on for the duration of the clonogenic assay. Values represent the mean \pm SE for 3 independent experiments.

were plated for clonogenic survival analysis, treated with 50 μ M ribavirin, a concentration that inhibits eIF4E activity in breast cancer cells (42), for 1h and irradiated. Ribavirin treatment alone reduced the surviving fraction to 0.30 \pm 0.07, similar to that induced by eIF4E knockdown. As shown in Figure 7 this ribavirin treatment protocol enhanced the radiosensitivity of MDA-MB-231 cells with a DEF of 1.35. These results suggest that targeting eIF4E may be a valid strategy for radiosensitization.

Discussion

Based on yH2AX data, the mechanism through which eIF4E influences tumor cell radiosensitivity appears to involve DNA DSB repair. It is unlikely that this translation initiation factor directly participates in the DSB repair process suggesting that the mechanism involves an aspect of the post-transcriptional regulation of gene expression. We have previously shown that radiation affects the translation of certain subsets of mRNAs through recruitment of existing mRNAs to and away from polysomes (21-22). The RIP-Chip results presented here showing that radiation enhances the binding of eIF4E to specific mRNA subpopulations is consistent with the radiation-induced translational control of gene expression. Moreover, a major subset of the mRNAs whose eIF4E binding was increased by radiation corresponded to those coding for proteins involved in DNA Replication, Recombination and Repair and Cell Cycle, which could then play a role in determining radiosensitivity. A role for radiation-induced gene translation in the cell survival response is suggested by the recent work by Singh et.al. showing that DNA DSBs are generated not only from the initial radiation deposition, but also from chemical processing occurring for hours after exposure to radiation (55). In this situation a requirement for the rapid increase in DNA repair proteins may contribute

to the recovery process. However, based on the experiments using siRNA to knockdown eIF4E (Figure 3), it is not possible to determine whether the tumor cell radiosensitization was the result of eliminating the radiation-induced enhancement in gene translation and/or changes in mRNA translation that are induced before irradiation. Along these lines, the eIF4E inhibitor ribavirin enhanced MDA-MD-231 cells radiosensitivity when given 1h before irradiation (Figure 7). Clearly, the mechanisms through which the reduction of eIF4E levels affect radiation-induced tumor cell killing require additional investigation.

Whereas knockdown of eIF4E levels induced radiosensitization of tumor cells, the same procedure had no effect on the radiosensitivity of normal cell lines. This tumor selectivity may involve the increased dependence of tumor cells on eIF4E activity. For both ribavirin and an antisense oligonucleotide (ASO) to eIF4E, tumor cells are more sensitive in terms of cytoxicity than normal cells. (42-43) Consistent with these previous findings knockdown of eIF4E in the current study reduced survival of the tumor cell lines to a greater degree than on the normal cells. eIF4E serves as a funnel point (56) for a number of oncogenic pathways reflecting the consequences of activation of RTKs along with Ras and PI3K pathways (34, 57-58). The elevated eIF4E availability under these circumstances then putatively enhances the translation selectively and disproportionally of genes mediating cell proliferation and survival and other processes contributing to the neoplastic phenotype (59). It would seem that many of the eIF4E dependent genes whose translation is increased in tumor cells may also contribute to the ability of the cell to survive after a variety of insults including radiation.

29

Whereas the mechanisms remain to be completely defined, in the study described here knockdown of eIF4E was shown to enhance the radiosensitivty of 3 human tumor lines while having no effect on the radiosensitivity of 2 normal cell lines. These data suggest that eIF4E provides a tumor selective target for radiosensitization. Because laboratory data has already indicated that eIF4E contributes to the neoplastic phenotype, strategies for targeting eIF4E are being investigated at the preclinical and clinical setting. One approach is the use of an ATP-active site inhibitor of mTOR. In contrast to allosteric mTOR inhibitors, i.e. rapalogs, the active site inhibitors completely inhibit mTORC1 function, preventing the phosphorylation of the mTOR substrate 4E-BP1, which prevents release of eIF4E and limits its availability for eIF4F formation (60). An additional approach has been the development of small molecule inhibitors of the eIF4EeIF4G interaction, which prevent complete formation of the eIF4F cap-complex (61). Inhibiting eIF4E expression with an eIF4E ASO has been shown to reduce eIF4E levels and to inhibit tumor cell growth in preclinical models (43). Finally, there has been considerable pre-clinical data evaluating ribavirin as an eIF4E activity inhibitor (44, 54). The mTOR active site inhibitors, ribavirin, and the eIF4E ASO are currently in clinical trials both as single agents (59, 62-63), as well as in combination with chemotherapy (64). The data presented in the current study showing that reduced eIF4E expression selectively enhances tumor radiosensitivity supports the clinical evaluation of these eIF4E-targeting strategies in combination with radiotherapy.

www.manaraa.com

CHAPTER 4:

Ribosomal Protein S6 Kinase 1 as a Determinant of Cellular Radiosensitivity Abstract

The ribosomal protein S6 kinases (S6Ks) are downstream effectors of the mTOR kinase and regulate a wide variety of cellular processes including translation initiation, ribosome biogenesis, and cell growth. Furthermore, the S6Ks are activated in a variety of malignancies and are associated with an enhancement of the malignant phenotype. To determine the role of S6K1 in regulating intrinsic cellular radiosensitivity, a panel of 3 tumor cell lines initiated tumors of different histologic origin and one normal cell line were treated with siRNA to S6K1. S6K1 knockdown enhanced the radiosensitivity of all 3 tumor lines as determined by clonogenic survival analysis. In contrast, S6K1 knockdown had no effect on the cellular radiosensitivity of the normal lung fibroblast line, MRC9. S6K1 knockdown increased expression of PDCD4, a tumor suppressor implicated in the cellular DNA damage response. Taken together these results suggest S6K1 is a potential tumor specific target for the enhancement of cellular radiosensitivity, and that its effects may be in part mediated by increased expression of PDCD4.

Introduction

As described in Chapter 2 we have shown that eIF4E, a critical and rate-limiting component of the translational machinery determines tumor cell radiosensitivity, and plays an integral role in the translational response to radiation. In addition to eIF4E, the p70 ribosomal protein S6 kinases (S6Ks) have a critical role in the regulation of mRNA

translation (65). There are two distinct genes encoding the p70 S6Ks (S6K1 and S6K2) (49). Most work characterizing these proteins has been done with S6K1, whereas there is less known about the function of S6K2 (49). S6K1 is a downstream effector of mTORC1 and regulate a wide variety of cellular processes including translation initiation, ribosome biogenesis, lipid synthesis, de novo pyrimidine synthesis, and cell growth (66). It exerts control over the translational machinery at multiple levels. The first identified substrate of S6K1 was ribosomal protein S6 (rpS6) a component of the 40S ribosome subunit that positively regulates translation and protein synthesis (66). There is conflicting evidence that S6K1 selectively regulates the translation of mRNAs containing 5' TOP (terminal oligopyrimidine) tracts (67-68). These mRNAs typically encode ribosomal proteins and translation factors (69). S6K1 also controls levels of the tumor suppressor, PDCD4 (programmed cell death 4) (70), a negative regulator of translation that inhibits the translation initiation factor eIF4A (71), a RNA helicase that is a component of the eIF4F cap-complex. eIF4A helicase activity is important for the unwinding of 5' UTRs that are highly structured (65). PDCD4 phosphorylation by S6K is followed by ubiquitylation via the ubiquitin ligase SCF- β -TRCP, and proteosomal degradation (70). Degradation of PDCD4 causes the release of eIF4A from PDCD4 and allows eIF4A to associate with the eIF4F cap-complex (70). Importantly, in the context of our study, PDCD4 has been linked to the cellular DNA damage response (72-73). In particular, PDCD4 knockdown of the human tumor cell line, HeLA, has been shown to decrease sensitivity to UV irradiation (74). Additionally, S6K enhances translation via phosphorylation of the initiation factor eIF4B. eIF4B phosphorylation by S6K1 enhances the helicase activity of eIF4A (65). This activation of eIF4B has been shown to correlate with its ability to

promote the translation of mRNAs with long and structured 5' UTRs (29). Lastly, S6K1 phosphorylates and inactivates the repressor of translation elongation eEF2K (eukaryotic elongation factor 2 kinase). eEF2K functions to phosphorylate and inhibit eEF2, a protein that mediates the translocation step of translation elongation (75).

S6K is activated, either through phosphorylation, or overexpression in a wide variety of malignancies and has been associated with poor prognosis in breast cancer (66) and gliomas (76). Activation in breast (77), colon (78), and liver tumors (79) was associated with a more malignant phenotype. S6K has been associated with glial transformation (80). Additionally, in several breast cancer cell lines, S6K has been associated with regulating cell survival (81). Activation of the mTOR/S6K pathway has also been associated with resistance to traditional chemotherapies (e.g. cisplatin) (66). Several factors (EGF, HGF, and SCF) and cytokines signal through S6K to partially exert their oncogenic activity (66). As such there has been considerable interest in the development of agents targeting S6K, with several in clinical trials: LY2584702 and XL418 (66). As radiation influences the translation of specific subsets of mRNAs, and S6K1 regulates translation, we addressed on the role of S6K1 in the cellular radioresponse in both tumor and normal cells. Reduction of S6K1 levels via siRNA knockdown enhanced the radiosensitivity of 3 tumor lines but not of normal lung fibroblasts. Furthermore, consistent with previous literature, S6K1 knockdown induced the expression of PDCD4 in A549 cells. These data provide initial insight into the role of S6K1 in regulating the cellular radioresponse as well as provide the basis for further studies investigating the application of S6K inhibitors with radiotherapy.

Results

To test the hypothesis that S6 kinase plays a role in determining cellular radiosensitivity we employed a siRNA mediated approach to reduce S6K1 levels. Using 3 tumor lines originated from tumors of distinct histologies (A549 lung adenocarcinoma, MDA-MB-231 breast carcinoma, and Panc1 pancreatic adenocarcinoma) and 1 normal cell line (MRC9 lung fibroblasts) the effects of S6K1 knockdown on cellular radiosensitivity were evaluated with the clonogenic survival assay. Each cell line was treated with siRNA specific to S6K1 (S6K KD) or non-targeted siRNA (scramble); 72h after transfection cultures were trypsinized to generated a single cell suspension and seeded at clonal density for survival analysis. The effects of S6K1 knockdown on cell survival were determined. As shown in Figure 8A, siRNA to S6K1 reduced S6K1 protein levels significantly when compared to non-targeted siRNA. Treatment with S6K1 siRNA reduced the surviving fraction to 0.77 ± 0.03 , $0.68 \pm .10$, $0.30 \pm .01$, and 0.11 ± 0.05 in A549, MDA-MB-231, Panc1, and MRC9 cells respectively. These data indicate that in vitro S6K knockdown does not have a consistent cytotoxic effect with respect to tumor versus normal cells.

The effects of S6K1 knockdown on cellular radiosensitivity are shown in Figure 8. For this study cells were treated as described above, and irradiated 6h after seeding. Treatment with siRNA to S6K1 resulted in an increase in the radiosensitivity of each of the 3 tumor cell lines as compared to non-targeted siRNA (Figure 8B-D). The dose enhancement factors at a surviving fraction of 0.1 (DEFs) for A549, MDA-MB-231, and Panc1 were 1.35, 1.42, and 1.44, respectively. The same experiment was performed on the normal lung fibroblast cell line (Figure 8E). In contrast to the tumor cell lines, S6K1 knockdown had no effect on the radiosensitivity of the normal cell line, MRC9. These

34

Figure 8: The effects of S6K1 knockdown on cellular radiosensitivity. Cells were transfected with siRNA to S6K1 (S6K KD) or non-targeted siRNA (Scramble). A, immunoblots from each cell line showing extent of S6K protein reduction 72 hours after transfection. A549 (B), MDA-MB-231 (C), Panc1 (D), and MRC9 (E), cells were plated seventy-two hours posttransfection, allowed to attach for 6 hours, and irradiated. Colony-forming efficiency was determined 10 to 14 days later, and survival curves were generated after normalizing for cell killing from siRNA alone. DEFS were calculated at a surviving fraction of 0.1.

Figure 9: The effects of S6K1 knockdown on PDCD4 expression. A) Immunoblot analysis 6K1 and PDCD4 expression in untreated cells (control) or cells transfected with siRNA to S6K1 (S6K KD) or non-targeted siRNA (Scramble). Actin was used as a loading control.

results suggest that S6K1 contributes to survival after irradiation of tumor but not normal cells.

As described in the Introduction the expression of the tumor suppressor PDCD4 has been shown to be controlled by S6K (70). To determine whether S6K knockdown results in increased expression of PDCD4 in the cell lines studied immunoblot analysis of A549 and Panc1 cells treated with siRNA to S6K or non-targeted siRNA was performed. The results of this analysis are shown in Figure 9. In both cell lines PDCD4 expression was increased upon treatment with siRNA specific to S6K relative to the non-targeted siRNA control, consistent with previous reports.

Discussion

Whereas the mechanism of radiosensitization remains to be defined, in the study presented here knockdown of S6K1 was shown to increase the radiosensitivity of 3 tumor lines initiated from tumors of different histologies. In contrast to the 3 tumor cell lines tested, S6K knockdown had no effect on the cellular radiosensitivity of the normal lung fibroblast line MRC9. In order to make a definitive conclusion about the possible tumor specificity of S6K1 as a target for enhancing radiosensitivity, these results should be extended to other normal cell lines. However, our initial investigations suggest that S6K1 appears to be a potential tumor selective target. Whereas we have not defined the exact mechanisms regarding this potential tumor selectivity, there are numerous studies, both pre-clinically and clinically, showing over-expression and hyperactivation of S6K in tumor versus normal tissue (66, 76-79). Furthermore, as described in the Introduction, S6K is controlled primarily by mTORC1. Numerous genetic alterations and upstream signaling events (e.g. Ras mutations and PI3K/AKT activation) that affect mTORC1

37

signaling have been reported in the context of oncogenesis and tumor progression (82). Additionally, S6K plays an important regulatory role in the control of mRNA translation (49). Data from our laboratory have shown radiation to control gene expression primarily through regulation of gene translation (21-22). These experiments also examined the translational response to radiation in tumor versus normal cells (21). Importantly tumor cells and normal cells had strikingly different translational responses to ionizing radiation exposure (21). It is possible to speculate that this potential tumor selective enhancement in radiosensitization seen with S6K1 knockdown is due to the aforementioned differences in S6K regulation and activity. Determining the differences responsible for this potential tumor selectivity in the context of S6K1 as a target for radiosensitization will be the subject for future investigation.

In the context of DNA damage, PDCD4 has been shown to play a role in determining cell survival after exposure to DNA damage. Specifically, PDCD4 knockdown of HeLa cells has been shown to increase survival to ultraviolet radiation (74). This affect was attributed to PDCD4's ability to suppress the translation of p53 responsive genes, such as p21 and GADD45a (74). While work remains to be done in establishing a causal role of PDCD4 in mediating S6K1 knockdown-induced radiosensitization, our results are in general agreement with this study as we show that S6K knockdown increases PDCD4 expression and decreases cell survival after exposure to ionizing radiation.

In addition, as described in the introduction, S6K1 plays an important role in the regulation of cap-dependent translation through its control of eIF4A. eIF4A has been shown to selectively control the translation of oncogenic transcripts (83). Silvestrol, a

naturally occurring compound, has been reported to inhibit the activity of eIF4A and suppress translation of specific subsets of oncogenic mRNAs (84). Furthermore. combination of silvestrol with the DNA damaging agent doxorubicin showed a synergistic effect in extending survival (85). This combination therapy with silvestrol and doxorubicin was only synergistic in mice that harbored activation of the mTOR pathway. Additionally, there is data in inflammatory breast cancer cells showing that eIF4A knockdown or pharmacologic inhibition results in radiosensitization (86). Given these reports as well as our data showing an increase in PDCD4, a repressor of eIF4A activity, it is possible to conclude that S6K1 knockdown's influence on radiosensitivity may be in part due to effects of increased PDCD4 expression on eIF4A activity. Additionally, given the data showing eIF4A inhibition synergizes with DNA damage only in the context of hyperactive PI3K/mTOR signaling (85) and the established activation of PI3K/mTOR signaling observed in tumor cells, it is possible that this is the mechanism for the potential tumor specific radiosensitization observed. In conclusion, these data suggest that targeting S6K is a potential target for tumor selective radiosensitization; however, the mechanisms underlying this effect largely remain undetermined and will be the subject of future investigation.

www.manaraa.com

CHAPTER 5:

Allosteric versus ATP-Competitive mTOR Inhibition and Radiosensitivity

Note to Reader

Portions of the results have been previously published (Hayman TJ Kramp T, Kahn J, Jamal M, Camphausen K, Tofilon PJ. Competitive but not allosteric mTOR kinase inhibition enhances tumor cell radiosensitivity. Translational Oncology. 2013; in press.) and are utilized with permission of the publisher. Tamalee Kramp and Muhammad Jamal assisted with animal experiments; Jenna Kahn assisted with in vitro data acquisition; Kevin Camphausen and Philip Tofilon helped to design and oversee project.

Abstract

The mechanistic target of rapamycin (mTOR) is a critical kinase in the regulation of gene translation and has been suggested as a potential target for radiosensitization. The goal of this study was to compare the radiosensitizing activities of the allosteric mTOR inhibitor rapamycin with that of the ATP competitive mTOR inhibitor PP242. Based on immunoblot analyses, whereas rapamycin only partially inhibited mTORC1 activity and had no effect on mTORC2, PP242 inhibited the activity of both mTOR containing complexes. Irradiation alone had no effect on mTORC1 or mTORC2 activity. Clonogenic survival was used to define the effects of the mTOR inhibitors on in vitro radiosensitivity. In the two tumor cell lines evaluated, PP242 treatment 1h before

irradiation increased radiosensitivity, whereas rapamycin had no effect. Addition of PP242 to culture media immediately, 1, or 6h after irradiation also enhanced the radiosensitivity of both tumor lines. To investigate the mechanism of radiosensitization, the induction and repair of DNA double strand breaks were evaluated according to γ H2AX foci. PP242 exposure did not influence the initial level of γ H2AX foci after irradiation, but did significantly delay the dispersal of radiation-induced γ H2AX foci. In contrast to the tumor cell lines, the radiosensitivity of a normal human fibroblast cell line was not influenced by PP242. Finally, PP242 administration to mice bearing U251 xenografts enhanced radiation-induced tumor growth delay. These results indicate that in a preclinical tumor model PP242 enhances tumor cell radiosensitivity both in vitro and in vivo and suggest this effect involves an inhibition of DNA repair.

Introduction

A primary determinant of eIF4E activity is the mechanistic target of rapamycin (mTOR), which plays a critical role in regulating mRNA translation and protein synthesis in response to a variety of environmental signals (82). mTOR exists in two distinct complexes: mTOR complex 1 (mTORC1), which includes Raptor, Pras40, Deptor, and Mlst8, and mTOR complex 2 (mTORC2), which includes Rictor, mSin1, Protor1/2 and Mlst8 (82). The major substrates for mTORC1 kinase activity are eIF4E-binding protein 1 (4E-BP1), and the ribosomal protein s6 kinase 1 (S6K1). In the hypophosphorylated state, 4E-BP binds to eIF4E preventing its association with eIF4G, the formation of the eIF4F complex, and cap-dependent translation (28). However, when 4E-BP1 is phosphorylated by mTORC1 it is released from eIF4E and the eIF4F cap-complex is assembled. The substrates of mTORC2 are less well defined, but include AGC kinases

such as AKT, SGK, and PKC (65). Of note, mTORC2 phosphorylation of AKT at s473 can indirectly lead to enhancement mTORC1 activation (87-88).

mTOR is a major downstream effector of a number of signaling pathways (e.g. PI3K/AKT, RAS/MAPK, and RTKs) (56, 82). Because these pathways are frequently activated or dysregulated in tumors, mTOR has been considered a target for cancer therapy (89). Most studies of mTOR have focused on the use of the allosteric inhibitor rapamycin and its analogs (rapalogs), which incompletely inhibit mTORC1 output and do not inhibit mTORC2 (90). In the context of cancer treatment, these drugs have shown modest activity with respect to patient outcomes (59). The resistance of some tumors to rapalogs as single agents has been attributed to their incomplete inhibition of 4E-BP1 phosphorylation, feedback activation of AKT, and/or the lack of mTORC2 inhibition (90-91). In contrast to the allosteric inhibitors, more recently developed ATP-competitive inhibitors of mTOR inhibit mTORC1 output more completely and inhibit mTORC2, which prevents the feedback activation of AKT following S6K inhibition (87, 92-95). Given mTOR's role in regulating eIF4E activity, we have defined the consequences of an allosteric (rapamycin) and ATP-competitive (PP242) mTOR inhibitor on the radiosensitivity of tumor and normal cells. The data presented here indicate that the mTORC1/2 inhibition achieved using the ATP-competitive inhibitor PP242 enhances tumor cell radiosensitivity in vitro and in vivo and suggest that this effect involves an inhibition of DNA double-strand break (DSB) repair.

Results

To investigate the effects of rapamycin and PP242 on tumor cell radiosensitivity, two human cell lines initiated from solid tumors were used: MDA-MB-231 (breast

carcinoma) and U251 (glioma). Initially, mTORC1 and mTORC2 activity was determined in each cell line after a 1h exposure to PP242 or rapamycin (Figures 10A and B). The goal of this analysis was not only to compare drugs with respect to inhibitory activity but to also define the minimal concentration of each drug necessary to elicit the maximally achievable mTOR kinase inhibition. Towards this end, the levels of p-S6K (t389) and p-4E-BP1 (t37/46 and s65) were used as readouts for mTORC1 activity; p-AKT (s473) was used as a marker for mTORC2 activity. Rapamycin exposure reduced p-S6K and marginally reduced p-4E-BP1 levels in both cell lines with essentially the same reductions induced by 5 and 10nM. No further reductions in these indicators of mTORC1 activity were achieved by increasing rapamycin concentrations out to 500 nM (data not shown), consistent with previous reports (59, 96). PP242 exposure (1 and 2 µmol/L) reduced p-S6k levels to a similar degree as rapamycin. However, PP242 was considerably more effective at reducing the levels of p-4E-BP1 than rapamycin, as previously shown (92-93). In contrast to rapamycin, PP242 inhibited the phosphorylation of AKT at s473 in both tumor cell lines, indicative of an inhibition of mTORC2 activity. Thus, as reported for other cell lines (92-93), in U251 and MDA-MB-231 cells PP242 inhibits the rapamycin resistant functions of mTOR.

To determine whether irradiation influences mTOR activity, U251 and MDA-MB-231 cells were exposed to 2 Gy and collected for immunoblot analysis at times out to 6h (Figures 11A and B). Based on levels of p-AKT, p-S6K, and p-4E-BP1, radiation did not increase mTORC1 or mTORC2 activity in either of these tumor cell lines. These measures were conducted using cells grown under optimal in vitro conditions (i.e. 10% FBS) applicable to clonogenic survival analysis. Whereas previous reports showed that

Figure 10: Effects of rapamycin and PP242 on mTORC1/2 activity. A) U251 and B) MDA-MB-231 cells were treated for 1h with the specified dose of inhibitor. Cells were collected and subjected to immunoblot analysis. Actin was used as a loading control.

Figure 11: The effect of radiation on mTOR activity. A) U251 and B) MDA-MB-231 cells were irradiated (2 Gy) and collected at the specified times and subjected to immunoblot analysis. Actin was used as a loading control. Immunoblots are representative of two independent experiments.

radiation increased mTORC1 and mTORC2 activity in tumor cells, those studies were performed using serum starved cells (97-98).

The effects of the mTOR inhibitors on tumor cell radiosensitivity as measured by clonogenic survival analysis are shown in Figure 12A and B. For this study, cells were plated at clonogenic density, allowed to attach (5-6 h); the indicated concentration of inhibitor was added 1h before irradiation. Twenty-four hours after irradiation media was removed, fresh drug-free media was added and colonies determined 10-14 days later. Based on the data shown in Figure 10, a concentration of 10 nmol/L rapamycin was used, which induces the maximum achievable level of mTORC1 inhibition. Rapamycin (10 nmol/L, 25h) alone did not reduce the surviving fraction of U251 cells. Moreover, addition of rapamycin 1h before irradiation had no effect on the radiosensitivity of U251 cells (Figure 12A). In U251 cells 1 and 2 µmol/L of PP242 added 1h prior to irradiation increased radiosensitivity in a dose-dependent manner (Figure 12A), consistent with its dose-dependent mTOR inhibition (Figure 10A), resulting in dose enhancement factors at a surviving fraction of 0.1 (DEFs) of 1.27 and 1.52, respectively. PP242 alone at 2 μ mol/L slightly reduced the U251 surviving fraction to 0.91 ± 0.04 and had no effect on survival at 1 μ mol/L. To determine whether these effects were unique to U251 cells, a similar analysis was used for MDA-MB-231cells (Figure 12B). Rapamycin (10 nmol/L, 25h) alone had no effect on the surviving fraction of MDA-MB-231 cells and had no effect on the radiosensitivity of MDA-MB-231 cells. PP242 (2 µmol/L, 25h) alone reduced surviving fraction of MDA-MB-231 cells to 0.83 ± 0.06 ; when PP242 was added 1h prior to irradiation enhanced their radiosensitivity with a DEF of 1.34. These data suggest that in contrast to the allosteric mTOR inhibitor rapamycin, the ATP-competitive

Figure 12: Effects of mTOR inhibitors on cellular radiosensitivity. A) U251, B) MDA-MB-231, and C) MRC9 cells were plated, allowed to attach for 5-6h, and the indicated concentration of inhibitor was added 1h before irradiation. Twenty-four hours after irradiation media was removed and fresh drug-free media was added. Colony-forming efficiency was determined 10-14 days later and survival curves were generated after normalizing for cell killing from drug alone. Values shown represent the mean <u>+</u> SEM for 3 independent experiments.

Figure 13: Influence of PP242 on radiation-induced γ H2AX foci. A) U251 and B) MDA-MB-231 cells were exposed to the indicated dose of PP242 1h prior to irradiation (2 Gy). Cells were collected at the specified time; γ H2AX foci were counted in at least 50 nuclei per condition. Values shown represent the means <u>+</u> SEM for 3 independent experiments, *p < 0.05 according to Student's *t* test (PP242 compared to control).

inhibitor PP242, which more completely inhibits mTORC1 and inhibits mTORC2, enhances radiation-induced cell killing. The same experiment using PP242 was performed using the normal lung fibroblast line, MRC9 (Figure 12C). PP242 alone had no effect on MRC9 survival and, in contrast to the tumor cell lines, had no effect on the radiosensitivity of MRC9 cells. These results suggest that PP242 induces a tumor selective increase in radiosensitivity.

The critical lesion responsible for radiation-induced cell death is the DNA double strand break (DSB). Because yH2AX foci correspond to radiation-induced DSBs and their dispersal correlates with DSB repair (47-48), the effects of PP242 on radiationinduced γ H2AX were evaluated in U251 and MDA-MB-231 cells (Figure 13 A and B). In this study PP242 was added 1h before irradiation (2 Gy) with γ H2AX nuclear foci determined at times out to 24h. In U251 cells 1 hour after irradiation, no difference in foci levels was detected between control (vehicle) and PP242 treated cells, suggesting that mTOR inhibition had no effect on the initial levels of radiation-induced DSBs. However, at 6 and 24 h after irradiation (2 Gy), the number of γ H2AX foci remaining in the PP242 (1 and 2 μ mol/L) treated cells was significantly greater than in control cells. This effect was PP242 dose-dependent, consistent with the dose-dependent effect on radiosensitivity in U251 cells. In MDA-MB-231 cells 1 hour after irradiation, no difference in foci levels was detected between vehicle treated and PP242 treated cells. However, at 24h after irradiation, the number of yH2AX foci remaining in the PP242 (2 µmol/L) treated cells was significantly greater than in vehicle treated cells. These data suggest that PP242 induces radiosensitization via an inhibition of the repair of radiationinduced DNA DSBs.

Figure 14: The effects of the timing of PP242 treatment on cellular radiosensitivity. A-B) U251 and C) MDA-MB-231 cells were plated and allowed to attach. Cells were then exposed to PP242 (2 μ mol/L) either 24h before irradiation (24h Pre-IR), immediately after (Immediately Post-IR), 1h after (1h Post-IR), or 6h after (6h Post-IR) irradiation. Media was removed and fresh drug-free media was added 24h after irradiation. Colony-forming efficiency was determined 10-14 days later and survival curves were generated after normalizing for cell killing from drug alone. Values shown represent the mean \pm SEM for 3 independent experiments.

In the initial treatment protocol evaluating the effects of PP242 on radiosensitivity (Figure 12) the mTOR inhibitor was added to the culture media 1h before irradiation. To determine whether this was the optimal exposure protocol for radiosensitization as well as to generate insight into the mechanisms involved, PP242 (2 µmol/L) was added to culture media at various times before or after irradiation followed by clonogenic survival analysis. In each experiment PP242 was removed 24h after exposure to radiation and all survival curves were generated after normalizing for cell killing caused by PP242 Addition of PP242 immediately after irradiation enhanced the treatment alone. radiosensitivity of U251 cells (Figure 14A) with a DEF of 1.60. Addition of PP242 at 1 and 6h after irradiation also resulted in radiosensitization (DEFs of 1.50 and 1.26, respectively), although the enhancement was substantially less for the 6h time point (Figure 14B). Treatment of U251 cells with PP242 24h prior to irradiation did not enhance their radiosensitivity (Figure 14B). These treatment protocols were also evaluated using MDA-MB-231 cells (Figure 14C). PP242 exposure for 24h before irradiation had no effect on the radiosensitivity of MDA-MB-231 cells, whereas drug addition immediately or 1h after irradiation enhanced radiosensitivity (DEFs of 1.88 and 1.71, respectively) with the sensitization also present, albeit diminished, at the 6h time point (DEF of 1.31). The data presented in Figures 14 indicate that the PP242-induced radiosensitization also occurs when the drug was added to culture media after irradiation.

To determine whether the enhancement of tumor cell radiosensitivity measured *in vitro* extends to an *in vivo* tumor model, U251 cells were grown as xenografts in nude mice. Initially, the ability of PP242 to inhibit mTOR activity in U251 xenografts was defined. PP242 (100 or 200 mg/kg) was delivered by oral gavage to mice bearing U251

leg tumors; 6h later tumors were collected and subjected to immunoblot analysis. As shown in Figure 15A, a consistent reduction of p-AKT and p-4EBP1 levels, indicative of mTORC2 and mTORC1 inhibition, respectively, was detected in tumors isolated from mice that received the PP242 at 200 mg/kg. Based on these results, a combination protocol was designed using 200 mg/kg PP242 and 2 Gy and the consequences on U251 tumor growth rate determined. Specifically, mice bearing U251 leg tumors (~210 mm³) were randomized into four groups: vehicle, PP242, radiation, and PP242 plus radiation. PP242 was delivered once a day (200 mg/kg, oral gavage) for four days with the tumor locally irradiated (2 Gy) 2h after each of the four drug treatments. The growth rates of U251 tumors exposed to each treatment are shown in Figure 15B. For each group, the time to grow from 210 mm³ (volume at time of treatment initiation) to 1,000 mm³ was calculated using the tumor volumes from the individual mice in each group (mean \pm SEM). These data were then used to determine the absolute growth delays (the time in days for tumors in treated mice to grow from 210 to 1000 mm³ minus the time in days for tumors to reach the same size in vehicle treated mice).

For U251 tumors (Figure 15B) the absolute growth delays for the PP242 alone and radiation alone groups were 1.0 ± 0.4 and 12.9 ± 2.1 days, respectively. The growth delay in mice treated with the combination of PP242 and radiation was 20.0 ± 1.3 days, which is greater than the sum of the growth delays caused by PP242 alone and radiation alone. To obtain a dose enhancement factor (DEF) comparing the tumor radioresponse in mice with and without PP242 treatment, the normalized tumor growth delays were determined, which accounts for the contribution of PP242 to tumor growth delay induced by the combination treatment. Normalized tumor growth delay was defined as the time

Figure 15: The effects of PP242 on radiation-induced tumor growth delay. A) Mice bearing U251 glioma xenografts were exposed to vehicle or PP242 (oral gavage) at the indicated dose. Six hours later tumors were collected and subjected to immunoblot analysis using actin as a loading control. Each lane represents the tumor from an individual mouse. B) When U251 tumors reached approximately 210 mm³ in size, mice were randomized into four groups: vehicle, PP242 (200 mg/kg administered once daily by oral gavage), radiation (2 Gy once daily), and PP242 plus radiation. PP242 was delivered once a day (200 mg/kg by oral gavage) for four days with the tumor locally irradiated (2 Gy) 2h after each of the four drug treatments. Each group contained five mice. Values represent the mean tumor volumes \pm SEM.

www.manaraa.com

in days for tumors to grow from 210 to 1000 mm³ in mice exposed to the combined modality minus the time in days for tumors to grow from 210 to 1000 mm³ in mice treated with PP242 only. The DEF, obtained by dividing the normalized tumor growth delay in mice treated with the radiation/PP242 combination (19.0) by the absolute growth delay in mice treated with radiation only (12.9), was 1.5. Thus, whereas PP242 delivered alone had no significant effect U251 tumor growth delay.

Discussion

Previous investigations into mTOR as a potential target for tumor cell radiosensitization have focused on rapamycin and various rapalogs. The conclusions of such studies have been somewhat inconsistent with radiosensitization detected for some tumor cell lines (97-99) but not others (100-102). Clearly, such inconsistencies may be attributed to cell type specificity and/or differences in treatment protocols. However, an additional complicating factor is that rapamycin is an incomplete inhibitor of mTOR kinase. That is, although rapamycin inhibits the S6 kinase phosphorylation mediated by mTORC1, it only partially inhibits mTORC1 dependent 4E-BP1 phosphorylation and does not inhibit mTORC2 activity (90). Consequently, attempts to correlate radiosensitization with targeting of mTOR have been limited to the evaluation of S6K phosphorylation (97-101). Along these lines, in a study that evaluated multiple rapamycin concentrations, Murphy et al. showed that exposure of sarcoma cell lines to 300 nmol/L rapamycin resulted in radiosensitization, yet 3 nmol/L was sufficient to eliminate detectable levels of p-S6K, a concentration that had no effect on radiosensitivity (98). Thus, as illustrated by this study, the relationship between

www.manaraa.com

rapamycin, mTOR activity and radiosensitization is unclear. To better understand the potential for mTOR to serve as a target for radiosensitization, we defined the radiosensitivity of tumor cells treated with the ATP-competitive mTOR inhibitor PP242, which in addition to inhibiting S6 kinase activation, inhibits 4E-BP phosphorylation as well as the mTORC2 activity (92-93). The data presented here show that for the two human tumor cell lines evaluated PP242 exposure, in contrast to rapamycin, enhanced radiation-induced cell killing.

Given the number of mTORC1 and mTORC2 substrates, whether PP242-induced radiosensitization is initiated via a single downstream event or whether multiple mTOR substrates are involved remains to be determined. However, as previously reported (32, 92, 103) and shown here, although rapamycin and PP242 inhibit S6 kinase phosphorylation to approximately the same degree, PP242 exposure results in a considerably more effective inhibition of 4E-BP1 phosphorylation. Feldman et al (92) reported that the PP242-mediated inhibition of 4E-BP1 phosphorylation prevents its release of eIF4E, thus reducing the level of eIF4E available for cap-dependent translation. Such a scenario would be consistent with our recent data showing that reduced eIF4E levels increase tumor cell radiosensitivity (104) and suggests that inhibiting the mTOR mediated phosphorylation of 4E-BP1 at least plays a role in PP242-induced radiosensitization.

Based on analysis of yH2AX foci induction and dispersion, it appears that PP242mediated radiosensitization is the result of an inhibition of DNA double strand break repair. Furthermore, the radiosensitization obtained when PP242 was added at times out to 6h after irradiation suggests that mTOR inhibition affects a later stage in the DNA

repair process. Although the direct interaction of mTOR or one of its substrates with a component of the DNA repair machinery cannot be eliminated, the role of mTOR as a critical regulator of gene translation in response to a variety of stress and environmental signals may also provide a mechanistic basis for the inhibition of DSB repair in PP242 treated cells. A recent study using microarray analysis of polysome-bound RNA showed that after PP242 exposure, among the genes whose translation was significantly suppressed included a number corresponding to DNA repair proteins (103). Ribosome profiling also indicated that among the genes whose translation was reduced after PP242 exposure were a number involved in DNA repair (105). With respect to the effects PP242 on radiosensitivity, microarray analysis of polysome-bound RNA has shown that radiation-induced changes in gene expression can be primarily attributed to translational control processes (21-22). Moreover, in our recent study using RIP-Chip analysis (104), irradiation of MDA-MB-231 cells was found to increase eIF4E binding to over 1000 unique transcripts, a significant number of which were associated with the functional category of DNA Replication, Recombination and Repair. Thus, the PP242-mediated inhibition of gene translation may also play a role in its radiosensitizing actions, which will be the subject of future studies.

It has previously been reported that mTOR activity is increased at 15 minutes after irradiation with a return to control levels by 1h (106). Whereas we did not evaluate mTOR activity at times less than 1h after irradiation, addition of PP242 at times up to 6h after irradiation was shown to result in radiosensitization. This would suggest that if there was a transient increase in mTOR activity after irradiation returning to control levels by 1h, it was not critical to the mechanism of PP242-induced radiosensitization.

Furthermore, the study by Contessa et al. used serum-starved cells, which results in a reduction in basal mTOR activity as compared to standard growth conditions (106). In contrast, we determined the effects of radiation on mTOR activity using the same conditions of clonogenic survival analysis (media supplemented with 10% serum).

Whereas PP242 exposure enhanced the radiosensitivity of human tumor cell lines, the same procedure had no effect on the radiosensitivity of the normal fibroblast line MRC9. Because mTOR activity in MRC9 cells was reduced by PP242 treatment to the same extent as in the tumor cells (data not shown), the lack of radiosensitization may reflect the previously established fundamental differences in mTOR activity and/or function in tumor versus normal cells (88). To further evaluate the clinical potential of PP242 delivered in combination with radiotherapy, its effects on mTOR activity and radiation-induced tumor growth delay were defined in a preclinical model system. Although PP242 inhibited mTOR activity in U251 xenografts, drug delivery for 4 days had no significant effect on tumor growth rate, which is in contrast to previous studies showing substantial tumor growth inhibition with prolonged daily PP242 treatment (93, 107). However, this drug treatment protocol did result in a significant increase in radiation-induced tumor growth delay. A number of ATP-competitive mTOR inhibitors are being evaluated in clinical trials (64). The data presented here showing that PP242 enhances tumor cell radiosensitivity both in vitro and in vivo suggests that these inhibitors delivered in combination with radiotherapy may be of value as a cancer treatment strategy.

CHAPTER 6:

ATP-Competitive mTOR Inhibition by the Clinically Available mTOR Inhibitor INK128 Enhances In Vitro and In Vivo Radiosensitivity of Pancreatic Adenocarcinoma

Abstract

As shown in Chapter 5, ATP-competitive inhibition of mTOR is required for tumor radiosensitization. Radiotherapy is a primary treatment modality for the treatment of locally advanced pancreatic ductal adenocarcinoma, where its use improves local control and survival. Additionally, constitutive mTOR activation has been shown in pancreatic adenocarcinoma. The purpose of this study was to define the effects of the clinically available ATP-competitive mTOR inhibitor, INK128, on pancreatic cancer radiosensitivity. Clonogenic survival was used to define the effects of INK128 on cellular radiosensitivity. In 3 pancreatic cancer cell lines addition of INK128 immediately after radiation resulted in radiosensitization. Removal of drug from culture media either 12 or 24 but not 6h resulted in radiosensitization. To investigate the mechanism of radiosensitization, the induction and repair of DNA double strand breaks were evaluated according to γ H2AX foci. INK128 exposure did not influence the initial level of γ H2AX foci after irradiation, but did significantly delay the dispersal of radiation-induced yH2AX foci. INK128 inhibits mTOR activity in vivo in a time and dose-dependent manner. Inhibition of mTOR by INK128 inhibits cap-complex formation in PSN1 tumor

www.manaraa.com

xenografts. Finally, the effects of INK128 on in vivo tumor radiosensitivity were defined and optimized using both in vitro and in vivo pharmacodynamic data.

Introduction

As described in Chapter 5 our laboratory recently compared the effects of the two classes of mTOR inhibitors on tumor cell radiosensitivity. ATP-competitive mTOR inhibition by PP242 enhanced tumor cell radiosensitivity both in vitro and in vivo (108). However, PP242 has been shown to have poor pharmacokinetic and pharmacodynamics properties in vivo (105). This led to the development of an analogue of PP242, INK128 (105), which possesses much-improved in vivo pharmacodynamics and pharmacokinetic properties. INK128 is currently undergoing analysis in the clinical trial setting now (64).

The overall survival rate for patients with pancreatic ductal adenocarcinoma (PDAC) remains dismal with an overall survival rate of approximately 5% despite advances in systemic therapy (109-110). Gemcitabine is the standard systemic therapy (111), however local control is an important component of therapy as it has been reported that approximately one-third of pancreatic cancer mortality is due to local disease (112). The importance of local control is highlighted by clinical data showing the combination of radiation with gemcitabine significantly prolongs survival when compared to gemcitabine alone (113). However, whereas there have been improvements in therapy, the prognosis for patients with pancreatic adenocarcinoma still remains poor. This emphasizes the need for the development of agents aimed at improving the efficacy of radiotherapy. High incidences of activating mutations in K-RAS have been reported in PDAC (114). These activating mutations in K-RAS increase MAPK as well as PI3K/AKT/mTOR signaling (114). Consistent with the role of activating mutations in K-

RAS it has been reported that approximately 70% of PDAC have constitutive mTOR activation (115). Given the proposed role of eIF4E and mTOR as determinants of tumor radiosensitivity, as well as the reported activation of mTOR in PDAC, the effects of the clinically available mTOR ATP-competitive inhibitor INK128 on pancreatic cancer cell radiosensitivity were defined. The data presented here indicate that mTORC1/2 inhibition by INK128 enhances PDAC radiosensitivity in vitro and in vivo and that this effect involves inhibition of DNA double strand break repair. Furthermore, these data provide preclinical insight into the design of protocols combining radiation and mTOR ATP-competitive inhibitors.

Results

To investigate the effects of mTOR inhibition by the mTOR ATP-competitive inhibitor INK128 on pancreatic cancer cell radiosensitivity, 3 human pancreatic cancer cell lines were used: Miapaca-2, Panc1, and PSN1. Initially mTORC1 and mTORC2 activity was determined in each cell line after various length of exposure to INK128 (Figure 16). Towards this end, the levels p-4E-BP1 (t37/46) were used as readouts for mTORC1 activity; p-AKT (s473) was used as a marker for mTORC2 activity. INK128 exposure in all three cell lines reduced activity of mTORC1 and mTORC2 in a time-dependent manner, consistent with reports in the literature (105).

The effects of INK128 on pancreatic cancer cell radiosensitivity as measured by clonogenic survival analysis are shown in Figure 17A-C. For this study cells were plated at clonogenic density, allowed to attach overnight, irradiated, followed immediately by adding the specified concentration of INK128. This protocol was chosen based upon our recently published work showing maximal radiosensitization by the ATP-competitive

Figure 16: Effects of INK128 on mTORC1/2 activity. A) The indicated cells were treated with the specified dose of inhibitor. Cells were collected at the specified time points and subjected to immunoblot analysis. Actin was used as a loading control.

Figure 17: Effects of INK128 on cellular radiosensitivity. A) Miapaca-2, B) Panc1, C) PSN1, and D) MRC9 cells were plated, allowed to attach overnight, irradiated and the indicated concentration of inhibitor was added immediately after radiation. Twenty-four hours after irradiation media was removed and fresh drug-free media was added. Colony-forming efficiency was determined 10-14 days later and survival curves were generated after normalizing for cell killing from drug alone. Values shown represent the mean \pm SEM for 3 independent experiments.

mTOR inhibitor PP242 when added immediately after radiation (108). Twenty-four hours after irradiation media was removed, fresh drug-free media was added and colonies determined 10-14 days later. INK128 treatment alone reduced the surviving fraction to 0.85 ± 0.02 in Miapaca-2 cells. In contrast, INK128 treatment had no effect on the surviving fraction of Panc1 or PSN1 cells. In all 3 pancreatic cancer cell lines treatment with INK128 immediately after irradiation resulted in an increase in cellular radiosensitivity. The dose-enhancement factors at a surviving fraction of 0.1 (DEF) were 1.33, 1.45, and 1.37 for Miapaca-2, Panc1, and PSN1 cells respectively. The same experiment using INK128 was performed using the normal lung fibroblast line, MRC9 (Figure 17D). INK128 treatment alone reduced the MRC9 surviving fraction to $0.73 \pm$ 0.05, and in contrast to the 3 pancreatic cancer cell lines had no significant effect on the radiosensitivity of MRC9 cells. These results are consistent with our previous results where PP242 enhanced tumor but not normal cell radiosensitivity (108). These results suggest that INK128 treatment causes an increase in the radiosensitivity of pancreatic cancer cells.

The critical lesion responsible for radiation-induced cell death is the DNA double strand break (DSB). Because γ H2AX foci correspond to radiation-induced DSBs and their dispersal correlates with DSB repair (47-48), the effects of INK128 on radiation-induced γ H2AX were evaluated in PSN1 cells (Figure 18). In this study the same treatment protocol used for the clonogenic survival assays above was used, which consisted of adding INK128 immediately after irradiation (2 Gy) with γ H2AX nuclear foci determined at times out to 24h. No difference in foci levels was detected between control (vehicle) and INK128 treated cells 1 hour after irradiation, suggesting that mTOR

Figure 18: Influence of INK128 on radiation-induced γ H2AX foci. A) PSN1 cells were exposed to the indicated dose of INK128 immediately after irradiation (2 Gy). Cells were collected at the specified time; γ H2AX foci were counted in at least 50 nuclei per condition. Values shown represent the means \pm SEM for 3 independent experiments, *p < 0.05 according to Student's *t* test (INK128 compared to control).

inhibition has no effect on the initial levels of radiation-induced DSBs. However at 6 and 24h after irradiation, the number of γ H2AX foci reaming was significantly greater in the inhibition has no effect on the initial levels of radiation-induced DSBs. However at 6 and 24h after irradiation, the number of γ H2AX foci reaming was significantly greater in the INK128 treated cells relative to control cells. These data are consistent with our recently published data showing eIF4E knockdown and pharmacologic inhibition of eIF4E by the mTOR ATP-competitive inhibitor PP242 delay the dispersal of radiation-induced γ H2AX foci. These results suggest that INK128-mediated radiosensitization is caused by an inhibition of radiation-induced DNA DSB repair.

Understanding the pharmacodynamic and pharmacokinetic properties of a drug is critical for the rational design of protocols combining radiation and chemotherapies. To begin to evaluate these effects in a preclinical setting Miapaca-2 and PSN1 cells were grown as xenografts in nude mice. The ability of INK128 to inhibit mTOR activity in both Miapaca-2 and PSN1 xenografts (Figure 19 A and B respectively) was determined via immunohistochemical analysis of p-4E-BP1 (t37/46) an established marker for mTOR activity. INK128 (1 or 3 mg/kg) was delivered by oral gavage to mice bearing Miapaca-2 or PSN1 tumor xenografts; tumors were collected either 2 or 6h after drugging, and processed for immunohistochemical analysis. In Miapaca-2 tumor xenografts treatment with INK128 (both 1 and 3 mg/kg) inhibited mTOR activity 2 hours after the initial dose as judged by a decrease in p-4E-BP1 staining, with a more pronounced inhibition with the 3 mg/kg dose. 6 hours after INK128 treatment mTOR activity is beginning to increase, albeit not to control levels, with a greater return to

A. Miapaca-2

Figure 19: The effects of INK128 treatment on mTOR activity in pancreatic tumor xenografts. Mice bearing Miapaca-2 (A) or PSN1 (B) xenografts were exposed to vehicle or the indicated dose of INK128 (oral gavage). Tumors were collected 2 or 6 hours later and prepared for immunohistochemical staining. Sections were probed with an antibody specific to p-4E-BP1 T37/46 followed by staining with a FITC coupled secondary antibody (green). Nuceli were visualized with DAPI (blue). Each image is of representative of at least two mice per treatment group.

baseline in the 1 mg/kg treated tumors. In PSN1 tumor xenografts treatment with both 1 and 3 mg/kg inhibited mTOR activity to a similar degree 2 hours after the initial drug dose. Consistent with the results obtained for Miapaca-2 tumor xenografts, 6 hours after drug dosing mTOR activity is beginning to return. These results suggest that INK128 inhibits mTOR activity in a dose and time-dependent manner in pancreatic tumor xenografts.

As described in the Introduction, mTOR controls eIF4F cap-complex formation primarily by phosphorylation of the translation inhibitor 4E-BP1. Upon phosphorylation, 4E-BP1 is released from the 5' mRNA cap followed by binding of eIF4G and subsequently the initiation of translation (32). To extend the immunohistochemical analysis of INK128-mediated mTOR inhibition to its effects on in vivo cap-complex formation, m⁷-GTP batch chromatography was employed on tumor PSN1 tumor xenografts treated with INK128 (3 mg/kg) and collected 2 or 6 hours later (Figure 20). m⁷-GTP batch chromatography is a standard approach for assessing eIF4F cap-complex formation (25, 30). Consistent with the constitutive phosphorylation of 4E-BP1 seen by immunohistochemical staining (Figure 19) vehicle treated mice have substantial eIF4F cap-complex formation as judged by bound eIF4G. Treatment with INK128 decreased eIF4F cap-complex as evidenced by an increase in bound 4E-BP1 and decrease in bound eIF4G. Furthermore, consistent with the time-dependent effect on mTOR activity seen by immunohistochemical staining, the effects of INK128 treatment on eIF4F capcomplex formation were time dependent with bound eIF4G beginning to increase 6 hours after drugging. These results suggest that *in vivo* mTOR inhibition by the mTOR ATPcompetitive inhibitor, INK128, results in a decrease in eIF4F cap-complex formation.

Figure 20: The effects of INK128 on PSN1 tumor xenograft eIF4F complex formation. A) m^7 -GTP affinity chromatography was performed on PSN1 tumor xenografts that were exposed to 3 mg/kg INK128 (oral gavge) or vehicle and collected at the specified timepoints. m^7 -GTP bound proteins were resolved via SDS-PAGE followed by immunoblot analysis. eIF4E was used as a loading control. Each lane represents the tumor from an individual mouse.

To determine whether the observed radiosensitization *in vitro* could be translated to an *in* vivo setting a tumor regrowth delay experiment was performed using PSN1 tumor xenografts in nude mice. Based upon the immunohistochemical analysis of INK128 treatment in PSN1 xenografts, a combination protocol was designed using INK128 and a single fraction of 6 Gy. Specifically, mice bearing PSN1 leg tumors (~180mm³) were randomized into four groups: vehicle, INK128 (3 mg/kg, delivered by oral gavage), radiation (6 Gy), and the combination of INK128 and radiation. INK128 was delivered once immediately after the locally delivered radiation dose. The growth rates of PSN1 tumors exposed to each treatment are shown in Figure 21A. As shown there was no difference in the growth rates of mice receiving radiation or mice that received the combination of radiation and a single dose of INK128. As such, this treatment protocol did not result in an enhancement of *in vivo* tumor radiosensitivity. The initial treatment protocol evaluating the effects of INK128 on pancreatic cancer cell radiosensitivity in *vitro* consisted of adding INK128 to culture media and removing drug 24h after radiation. In light of the lack of sensitization seen in the single dose in vivo tumor growth delay experiments as well as the immunohistochemical analysis showing mTOR activity beginning to return as early as 6h post a single drug dose we postulated that duration of mTOR inhibition post-radiation could be an important factor in the determining the radiosensitization seen with INK128 treatment. To begin to address this question in vitro we performed clonogenic survival analysis with PSN1 cells using a modified treatment protocol. This protocol consisted of addition of INK128 to culture media immediately after radiation and removing the drug 6, 12, or 24h post-radiation. The results of this analysis are shown in Figure 21B. In all 3 treatment protocols INK128 alone had no

Figure 21: The effects of duration of mTOR inhibition on in vitro and in vivo radiosensitivity. . When PSN1 tumor xenografts reached approximately 180 mm³ in size, mice were randomized into four groups: vehicle, INK128 (oral gavage), radiation, and INK128 plus radiation. A) The tumors were locally irradiated (6 Gy) followed by a single dose of INK128 (3 mg/kg.) Each group contained six mice. Values represent the mean tumor volumes + SEM. B.) PSN1 cells were plated at clonal density and allowed to attach overnight irradiated and INK128 (4µM) was added immediately after irradiation. At the specified times after irradiation media was removed and fresh drug-free media was added. Colony-forming efficiency was determined 10-14 days later and survival curves were generated after normalizing for cell killing from drug alone. DEFs were calculated at a surviving fraction of 0.1. Values shown represent the mean + SEM for 3 independent experiments. C) INK128 was delivered twice daily (1.5 mg/kg) for two days with the tumor locally irradiated (6Gy) 1h after the first drugging followed by a second drug dose delivered 6h later. INK128 alone contained 5 mice and all other group contained 6 mice. Values represent the mean tumor volumes + SEM. D) INK128 was delivered twice daily (1.5 mg/kg) for 4 days with the tumor locally irradiated (2 Gy) 1h after the first drugging followed by a second drug dose delivered 6h later. On the fifth day INK128 was delivered twice with each dose separated by 7h. The INK128/radiation combination group contained 6 mice and all other group contained 7 mice. Values represent the mean tumor volumes + SEM.

effect on the surviving fraction. The treatment protocol where INK128 was removed 6h post-irradiation had no significant effect on the radiosensitivity of PSN1 cells, whereas removing INK128 12 or 24h after irradiation enhanced PSN1 tumor cell radiosensitivity with DEFs of 1.23 and 1.33 respectively. These data suggest that duration of mTOR inhibition after radiation is an important determinant of the radiosensitizing effects seen with INK128 treatment.

In light of the *in vitro* data suggesting that sustained mTOR inhibition beyond 6h is critical for radiosensitization with INK128 as well as immunohistochemical analysis and eIF4F cap-complex formation data in PSN1 tumors suggesting mTOR activity begins to return as early as 6h after a single drug exposure, a modified tumor growth delay experiment combining radiation and INK128 was designed. Specifically, mice bearing PSN1 tumor xenografts were randomized into four treatment groups: vehicle, INK128 (1.5 mg/kg), radiation, or combination treatment. This experiment was performed with a single dose of locally delivered radiation (6 Gy) given 1h after INK128 treatment. INK128 was given again 6h after irradiation, followed the next day by two additional INK128 doses separated by 7h. The effects of the different treatment protocols on tumor growth are shown in Figure 21C. For each group the time to grow from 180mm³ (volume of tumors at initiation of treatment) to 1000mm³ was calculated using the tumor volumes from the individual mice in each group (mean \pm SEM). These data were then used to determine the absolute growth delays. For PSN1 tumors the absolute growth delay for radiation alone was 6.3 ± 0.7 days. INK128 treatment alone had no significant effect on tumor growth delay. For tumors treated with the combination of INK128 and radiation the absolute growth delay was 12.3 ± 0.4 days. Importantly, this growth delay

is greater than the sum of the growth delays from the individual treatments indicative of an enhancement of tumor radiosensitivity. To obtain a dose enhancement factor (DEF) comparing the tumor radioresponse in mice with and without INK128 treatment, the normalized tumor growth delays were determined, which accounts for the contribution of INK128 to tumor growth delay induced by the combination treatment. Normalized tumor growth delay was defined as the time in days for tumors to grow from 180 to 1000 mm³ in mice exposed to the combined modality minus the time in days for tumors to grow from 180 to 1000 mm³ in mice treated with INK128 only. The DEF, obtained by dividing the normalized tumor growth delay in mice treated with the radiation/INK128 combination (12.3) by the absolute growth delay in mice treated with radiation only (6.3), was 2.0. Consistent with *in vitro* data, these *in vivo* data suggest extended mTOR inhibition for periods longer than 6h are required for INK128-induced radiosensitization.

To extend the single dose *in vivo* tumor growth delay study to a clinically relevant radiation protocol, a tumor growth delay experiment was performed with fractionated radiation. Specifically, mice bearing PSN1 tumor xenografts were randomized into four treatment groups: vehicle, INK128 (1.5 mg/kg), radiation (2Gy x 4), or combination treatment. This experiment was performed with locally delivered radiation (2 Gy) given 1h after INK128 treatment. INK128 was given again 6h after irradiation. This was performed for four consecutive days. On the fifth day two additional INK128 doses separated by 7h were given. The effects of the different treatment protocols on tumor growth are shown in Figure 21D. For each group the time to grow from 180mm³ (volume of tumors at initiation of treatment) to 1000mm³ was calculated using the tumor volumes from the individual mice in each group (mean \pm SEM). These data were then

used to determine the absolute growth delays (the time in days for tumors in treated mice to grow from 180mm³ to 1000 mm³ minus the time in days for tumors to reach the same size in vehicle treated mice). For PSN1 tumors the absolute growth delays for INK128 alone and radiation alone were 1.0 ± 0.6 and 3.7 ± 0.6 days respectively. For tumors treated with the combination of INK128 and radiation the absolute growth delay was 10.1 \pm 1.8 days. Importantly, this growth delay is greater than the sum of the growth delays from the individual treatments, indicative of an enhancement of tumor radiosensitivity. Normalized tumor growth delay was defined as the time in days for tumors to grow from 180 to 1000 mm³ in mice exposed to the combined modality minus the time in days for tumors to grow from 180 to 1000 mm³ in mice treated with INK128 only. The DEF, obtained by dividing the normalized tumor growth delay in mice treated with the radiation/INK128 combination (9.1) by the absolute growth delay in mice treated with radiation only (3.7), was 2.5. Consistent with the single radiation dose experiment the combination of INK128 with a clinically relevant fractionated radiation protocol enhanced in vivo tumor radiosensitivity.

Discussion

Based upon the analysis of radiation-induced γ H2AX foci after radiation in PSN1 cells treated with INK128 it appears that the mechanism of radiosensitization involves an inhibition of DNA DSB repair. These results are consistent with our recently published results showing mTOR ATP-competitive inhibition of tumor cell lines resulted in an inhibition of DNA DSB repair. Furthermore in vitro clonogenic survival analysis showing maintenance of mTOR inhibition for greater than 6h was required for effective radiosensitization, suggests that INK128 inhibits a later stage of DNA DSB repair.

Although the direct interaction of mTOR or one of its substrates with a component of the DNA repair machinery cannot be eliminated, the role of mTOR as a critical regulator of gene translation in response to a variety of environmental and stress signals may provide a mechanistic basis for the inhibition of DSB repair in INK128 treated cells. A recent study using microarray analysis of polysome-bound RNA showed that after PP242 exposure, the translation of genes suppressed included many corresponding to DNA repair proteins (103). Furthermore, another recent report using ribosome profiling to identify actively translated mRNAs showed INK128 treatment inhibited the translation of many mRNAs encoding proteins related to DNA DSB repair (105). As microarray analysis of polysome-bound RNA has shown that radiation-induced changes in gene expression can be primarily attributed to translational control processes (21-22) it is possible to conclude that INK128's effects on radiosensitivity are due in part to inhibition of cap-dependent translation. Moreover, in our recent study using RIP-Chip analysis (104), irradiation of MDA-MB-231 cells was found to increase eIF4E binding to over 1000 unique transcripts, a significant number of which were associated with the functional category of DNA Replication, Recombination and Repair. Thus, the INK128mediated inhibition of gene translation may also play a role in its radiosensitizing actions, which will be the subject of future studies.

mTOR is the primary kinase involved in the regulation of cap-dependent translation initiation due in part to it control of 4E-BP1 phosphoryaltion (49). Using immunohistochemical staining we showed a time and dose-dependent inhibition of mTOR activity in both Miapaca-2 and PSN1 tumor xenografts. It has been shown that inhibition of mTOR by an ATP-competitive inhibitor results in the decrease of 4E-BP1

phosphorylation (92, 103). This effect has been translated to an increase in binding of 4E-BP1 and a concomitant decrease in the amount of eIF4G binding to the 5' mRNA cap *in vitro* (93). However, to the best of our knowledge, the effects of mTOR ATP-competitive inhibition on eIF4F cap-complex formation have not been evaluated in vivo. Using m⁷-GTP batch chromatography in PSN1 tumor xenografts we showed inhibition of mTOR activity by INK128 does indeed translate to an inhibition of cap-complex formation in human tumor xenografts. This inhibition of cap-dependent translation in vivo is consistent with the hypothesis that an inhibition of radiation-induced translation is involved in the mechanism of radiosensitization by the mTOR ATP-competitive inhibitor INK128.

The study of in vivo pharmacodynamics and pharmacokinetic properties of a drug is important for the potential clinical translation of a drug, particularly when designing protocols combining multiple treatment modalities. These effects are evidenced by our in vivo tumor growth delay experiments as well as in vitro clonogenic survival data. The initial in vivo tumor growth delay experiment showing a lack of radiosensitization with a single dose of INK128 given immediately after radiation, emphasize the understanding of target engagement in vivo. Both immunohistochemical analysis as well as analysis of cap-complex formation in vivo suggest mTOR activity in PSN1 tumor xenografts is beginning to return to baseline as early as 6h after the initial drug treatment. When combined with the in vitro clonogenic survival data suggesting that mTOR inhibition for greater than 6h is required for effective radiosensitization, a redesign of the protocol to include additional drug dosing was performed. In this protocol, INK128, when given twice daily with radiation, significantly enhanced radiation-induced tumor growth delay,

once again emphasizing the need for a thorough understanding of the pharmacodynamics and pharmacokinetics of drugs both in vitro and in vivo. There are several ATPcompetitive inhibitors currently in clinical trials (including INK128) (64). The data presented here showing that INK128 enhances pancreatic cancer radiosensitivity both in vitro and in vivo suggests that these inhibitors delivered in combination with radiotherapy may be of value as a treatment strategy for pancreatic cancer.

CHAPTER 7

Overall Conclusions

As described in the Chapter 1, radiation-induced control of gene expression appears to be controlled primarily at the level of mRNA translation (21-22). The data presented in this thesis begin to elucidate the specific role of critical components of the translational machinery in determining the cellular response to ionizing radiation. While there are numerous regulatory proteins in involved in translational control, eIF4E, S6K, and the mTOR kinase, which regulates both eIF4E and S6K, affect the rate-limiting step of mRNA translation; translation initiation (82). As such the work presented in this thesis focused on determining the role of each protein in the radiation response. In the case of both eIF4E and S6K, the initial studies aimed at determining the role of each protein in controlling cellular radiosensitivity focused on the use of siRNAs targeting these components. In each case, siRNA specific to eIF4E and S6K enhanced the cellular radiosensitivity of tumor lines of various histologies.

For a radiosensitizing compound to be clinically useful it must enhance the response of the tumor to radiation while sparing the normal tissue, as normal tissue toxicity is the dose-limiting factor in radiotherapy. As described previously, inhibition of eIF4E, S6K, and mTOR expression or activity enhanced the radiosensitivity of various tumors, while having no effect on the *in vitro* radiosensitivity of normal tissues. While these were studies were performed only *in vitro* they begin to address whether these regulatory components of the translational machinery could potentially serve as tumor

specific targets. While the exact reason for this tumor specificity remains to be determined it is possible to speculate that the established differences in translational regulation between tumor and normal cells may be explanatory. In the context of cellular signaling, tumors have been shown to have aberrant activation of numerous signaling pathways that transduce their signals through mTOR/eIF4E/S6K and hence activate mRNA translation (e.g. RTK, RAS/MAPK, and PI3K) (34, 57-58). In fact 4E-BP1, the major regulator of eIF4E activity, has been referred to as a funnel factor (56), in so much as it exists as a downstream effector of many of the aforementioned hyper-activated oncogenic signaling pathways. Specifically, the translational response to radiation has been shown to differ greatly in tumor and normal cells (21). Lastly, in the context of combination therapy with standard DNA damaging chemotherapies and translation inhibitors, the combination was only synergistic when tumors had deregulated translation (85). As such it is possible to conclude that the tumor specific radiosensitization seen with inhibition of these components of the translational machinery may be due to activation of oncogenic signaling pathways leading to an aberrant translational program. Future studies comparing the translational response of tumor versus normal cells in the context of mTOR inhibition may be used to begin to understand the tumor selectivity of targeting the above-mentioned components of the translational machinery.

mRNA translation and components of the translational machinery have been implicated in cellular transformation and oncogenesis (28). All three critical components of the translational machinery studied in this thesis have individually been shown to be critical for various aspects of cancer initiation and progression (e.g. cell growth, invasion, and cellular transformation) (34, 39, 66, 88). Overexpression and hyperactivity of both

eIF4E (41-42) and the mTOR kinase (60) have been shown to impart a poor prognosis on patients with various tumors . As such, agents aimed at targeting these components have been developed and are currently available for clinical use (64). Some of the agents such as the ISIS eIF4E antisense, mTOR ATP-competitive inhibitors (e.g. INK128), and S6K inhibitors (e.g. LY2584702) have been mentioned previously in this dissertation. The work presented here begins to highlight the importance of the translational machinery in determining tumor survival after radiation. Given the clinical availability of agents targeting the translational machinery as well as the data presented showing that inhibition of these components enhances tumor cell radiosensitivity, it is logical to suggest evaluation of these agents in combination with radiation in the clinical trial setting.

On the basis of analysis γ H2AX induction and dispersal, both eIF4E as well as competitive mTOR inhibition appear to inhibit the repair of radiation-induced DNA DSBs. Although direct interaction of eIF4E, mTOR, or an mTOR substrate with a component of the DNA repair machinery cannot be eliminated, the critical role of both proteins in the translational response to a wide variety of environmental and stress signals may provide a mechanistic basis for the observed inhibition of DNA DSB repair. Several studies have shown that inhibition of mTOR activity results in inhibition of translation of mRNA corresponding to DNA repair genes (103, 105). As detailed in Chapter 2, using microarray analysis of eIF4E-bound mRNAs, radiation was shown to induce eIF4E binding to more than 1000 unique transcripts. A significant proportion of these mRNAs encode proteins related to DNA replication, recombination, and repair. In agreement with our results a recent study using microarray analysis of polyribosome-bound mRNA found that radiation-induced translation of mRNAs that were involved in DNA damage

repair, several of which overlapped with proteins our study showed to be increasingly bound to eIF4G after irradiation. Importantly, Singh and colleagues (55) have shown that DNA DSBs are generated not only from the initial radiation exposure, but also from chemical processing occurring for hours after exposure to radiation. In this situation, a rapid induction in DNA damage response proteins may contribute to cell survival after radiation. While our initial studies with eIF4E knockdown were unable to determine whether the tumor cell radiosensitization was due to an inhibition of radiation-induced gene expression, or changes in mRNA translation prior to irradiation, subsequent studies, with post-radiation addition of PP242 and INK128, suggest that the mechanism of radiosensitization involves an inhibition of a radiation-induced process (e.g. gene translation). Thus, mTOR inhibition in the context of altering the radiation-induced translational response is currently the focus of additional studies in our laboratory.

In summary, the data provided in this thesis have begun to characterize the role of the translational machinery in determining the cellular response to radiation. While there is work that remains to be completed in understanding the exact mechanisms involved in the radiosensitization seen by targeting components of the translational machinery, we believe the work presented in this thesis argue that targeting components of the translational machinery is a strategy that deserves consideration for evaluation in the clinical trial setting.

REFERENCES

1. Amundson SA, Bittner M, Chen Y, Trent J, Meltzer P, Fornace AJ, Jr. Fluorescent cDNA microarray hybridization reveals complexity and heterogeneity of cellular genotoxic stress responses. Oncogene. 1999;18:3666-72.

2. Azzam EI, de Toledo SM, Little JB. Expression of CONNEXIN43 is highly sensitive to ionizing radiation and other environmental stresses. Cancer Research. 2003;63:7128-35.

3. Khodarev NN, Park JO, Yu J, Gupta N, Nodzenski E, Roizman B, et al. Dosedependent and independent temporal patterns of gene responses to ionizing radiation in normal and tumor cells and tumor xenografts. Proceedings of the National Academy of Sciences of the United States of America. 2001;98:12665-70.

4. Kruse JJ, te Poele JA, Russell NS, Boersma LJ, Stewart FA. Microarray analysis to identify molecular mechanisms of radiation-induced microvascular damage in normal tissues. International Journal of Radiation Oncology, Biology, Physics. 2004;58:420-6.

5. Otomo T, Hishii M, Arai H, Sato K, Sasai K. Microarray analysis of temporal gene responses to ionizing radiation in two glioblastoma cell lines: up-regulation of DNA repair genes. J Radiat Res. 2004;45:53-60.

6. Yin E, Nelson DO, Coleman MA, Peterson LE, Wyrobek AJ. Gene expression changes in mouse brain after exposure to low-dose ionizing radiation. International Journal of Radiation Biology. 2003;79:759-75.

7. Szkanderova S, Port M, Stulik J, Hernychova L, Kasalova I, Van Beuningen D, et al. Comparison of the abundance of 10 radiation-induced proteins with their differential gene expression in L929 cells. International Journal of Radiation Biology. 2003;79:623-33.

8. Birrell GW, Brown JA, Wu HI, Giaever G, Chu AM, Davis RW, et al. Transcriptional response of Saccharomyces cerevisiae to DNA-damaging agents does not identify the genes that protect against these agents. Proc Natl Acad Sci U S A. 2002;99:8778-83.

9. Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol. 1999;19:1720-30.

10. Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science. 2001;292:929-34.

11. Shenton D, Smirnova JB, Selley JN, Carroll K, Hubbard SJ, Pavitt GD, et al. Global translational responses to oxidative stress impact upon multiple levels of protein synthesis. J Biol Chem. 2006;281:29011-21.

12. Smirnova JB, Selley JN, Sanchez-Cabo F, Carroll K, Eddy AA, McCarthy JE, et al. Global gene expression profiling reveals widespread yet distinctive translational responses to different eukaryotic translation initiation factor 2B-targeting stress pathways. Mol Cell Biol. 2005;25:9340-9.

13. Shankavaram UT, Reinhold WC, Nishizuka S, Major S, Morita D, Chary KK, et al. Transcript and protein expression profiles of the NCI-60 cancer cell panel: an integromic microarray study. Mol Cancer Ther. 2007;6:820-32.

14. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell. 2000;6:1099-108.

15. Pradet-Balade B, Boulme F, Beug H, Mullner EW, Garcia-Sanz JA. Translation control: bridging the gap between genomics and proteomics? Trends in biochemical sciences. 2001;26:225-9.

16. Wilkie GS, Dickson KS, Gray NK. Regulation of mRNA translation by 5'- and 3'-UTR-binding factors. Trends in biochemical sciences. 2003;28:182-8.

17. Kuersten S, Goodwin EB. The power of the 3' UTR: translational control and development. Nature reviews Genetics. 2003;4:626-37.

18. Mikulits W, Pradet-Balade B, Habermann B, Beug H, Garcia-Sanz JA, Mullner EW. Isolation of translationally controlled mRNAs by differential screening. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2000;14:1641-52.

19. Petroulakis E, Wang E. Nerve growth factor specifically stimulates translation of eukaryotic elongation factor 1A-1 (eEF1A-1) mRNA by recruitment to polyribosomes in PC12 cells. J Biol Chem. 2002;277:18718-27.

20. Rajasekhar VK, Viale A, Socci ND, Wiedmann M, Hu X, Holland EC. Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes. Mol Cell. 2003;12:889-901.

21. Kumaraswamy S, Chinnaiyan P, Shankavaram UT, Lu X, Camphausen K, Tofilon PJ. Radiation-induced gene translation profiles reveal tumor type and cancer-specific components. Cancer Res. 2008;68:3819-26.

22. Lu X, de la Pena L, Barker C, Camphausen K, Tofilon PJ. Radiation-induced changes in gene expression involve recruitment of existing messenger RNAs to and away from polysomes. Cancer Res. 2006;66:1052-61.

82

23. Badura M, Braunstein S, Zavadil J, Schneider RJ. DNA damage and eIF4G1 in breast cancer cells reprogram translation for survival and DNA repair mRNAs. Proc Natl Acad Sci U S A. 2012;109:18767-72.

24. Keene JD. RNA regulons: coordination of post-transcriptional events. Nature reviews Genetics. 2007;8:533-43.

25. Braunstein S, Badura ML, Xi Q, Formenti SC, Schneider RJ. Regulation of protein synthesis by ionizing radiation. Mol Cell Biol. 2009;29:5645-56.

26. Masuda K, Abdelmohsen K, Kim MM, Srikantan S, Lee EK, Tominaga K, et al. Global dissociation of HuR-mRNA complexes promotes cell survival after ionizing radiation. The EMBO journal. 2011;30:1040-53.

27. Mazan-Mamczarz K, Hagner PR, Zhang Y, Dai B, Lehrmann E, Becker KG, et al. ATM regulates a DNA damage response posttranscriptional RNA operon in lymphocytes. Blood. 2011;117:2441-50.

28. Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell. 2009;136:731-45.

29. Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol. 2009;10:307-18.

30. Li Y, Yue P, Deng X, Ueda T, Fukunaga R, Khuri FR, et al. Protein phosphatase 2A negatively regulates eukaryotic initiation factor 4E phosphorylation and eIF4F assembly through direct dephosphorylation of Mnk and eIF4E. Neoplasia. 2010;12:848-55.

31. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207-10.

32. Hsieh AC, Truitt ML, Ruggero D. Oncogenic AKTivation of translation as a therapeutic target. Br J Cancer. 2011;105:329-36.

33. Culjkovic B, Borden KL. Understanding and Targeting the Eukaryotic Translation Initiation Factor eIF4E in Head and Neck Cancer. J Oncol. 2009;2009:981679.

34. Graff JR, Konicek BW, Carter JH, Marcusson EG. Targeting the eukaryotic translation initiation factor 4E for cancer therapy. Cancer Res. 2008;68:631-4.

35. Mamane Y, Petroulakis E, Rong L, Yoshida K, Ler LW, Sonenberg N. eIF4E-from translation to transformation. Oncogene. 2004;23:3172-9.

36. Larsson O, Li S, Issaenko OA, Avdulov S, Peterson M, Smith K, et al. Eukaryotic translation initiation factor 4E induced progression of primary human mammary epithelial cells along the cancer pathway is associated with targeted translational deregulation of oncogenic drivers and inhibitors. Cancer Res. 2007;67:6814-24.

37. Lazaris-Karatzas A, Montine KS, Sonenberg N. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5' cap. Nature. 1990;345:544-7.

38. Ruggero D, Montanaro L, Ma L, Xu W, Londei P, Cordon-Cardo C, et al. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med. 2004;10:484-6.

39. Graff JR, Konicek BW, Lynch RL, Dumstorf CA, Dowless MS, McNulty AM, et al. eIF4E activation is commonly elevated in advanced human prostate cancers and significantly related to reduced patient survival. Cancer Res. 2009;69:3866-73.

40. De Benedetti A, Harris AL. eIF4E expression in tumors: its possible role in progression of malignancies. Int J Biochem Cell Biol. 1999;31:59-72.

41. Chen CN, Hsieh FJ, Cheng YM, Lee PH, Chang KJ. Expression of eukaryotic initiation factor 4E in gastric adenocarcinoma and its association with clinical outcome. J Surg Oncol. 2004;86:22-7.

42. Pettersson F, Yau C, Dobocan MC, Culjkovic-Kraljacic B, Retrouvey H, Puckett R, et al. Ribavirin treatment effects on breast cancers overexpressing eIF4E, a biomarker with prognostic specificity for luminal B-type breast cancer. Clin Cancer Res. 2011;17:2874-84.

43. Graff JR, Konicek BW, Vincent TM, Lynch RL, Monteith D, Weir SN, et al. Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity. J Clin Invest. 2007;117:2638-48.

44. Kentsis A, Topisirovic I, Culjkovic B, Shao L, Borden KL. Ribavirin suppresses eIF4E-mediated oncogenic transformation by physical mimicry of the 7-methyl guanosine mRNA cap. Proc Natl Acad Sci U S A. 2004;101:18105-10.

45. Culjkovic B, Topisirovic I, Skrabanek L, Ruiz-Gutierrez M, Borden KL. eIF4E is a central node of an RNA regulon that governs cellular proliferation. J Cell Biol. 2006;175:415-26.

46. Dong K, Wang R, Wang X, Lin F, Shen JJ, Gao P, et al. Tumor-specific RNAi targeting eIF4E suppresses tumor growth, induces apoptosis and enhances cisplatin cytotoxicity in human breast carcinoma cells. Breast Cancer Res Treat. 2009;113:443-56.

47. Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, et al. GammaH2AX and cancer. Nat Rev Cancer. 2008;8:957-67.

48. Lobrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA, et al. gammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle. 2010;9:662-9.

49. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18:1926-45.

50. Furic L, Rong L, Larsson O, Koumakpayi IH, Yoshida K, Brueschke A, et al. eIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. Proc Natl Acad Sci U S A. 2010;107:14134-9.

51. Morgan MA, Parsels LA, Zhao L, Parsels JD, Davis MA, Hassan MC, et al. Mechanism of radiosensitization by the Chk1/2 inhibitor AZD7762 involves abrogation of the G2 checkpoint and inhibition of homologous recombinational DNA repair. Cancer Res. 2010;70:4972-81.

52. Post S, Weng YC, Cimprich K, Chen LB, Xu Y, Lee EY. Phosphorylation of serines 635 and 645 of human Rad17 is cell cycle regulated and is required for G(1)/S checkpoint activation in response to DNA damage. Proc Natl Acad Sci U S A. 2001;98:13102-7.

53. Zhao H, Luoto KR, Meng AX, Bristow RG. The receptor tyrosine kinase inhibitor amuvatinib (MP470) sensitizes tumor cells to radio- and chemo-therapies in part by inhibiting homologous recombination. Radiother Oncol. 2011;101:59-65.

54. Tan K, Culjkovic B, Amri A, Borden KL. Ribavirin targets eIF4E dependent Akt survival signaling. Biochem Biophys Res Commun. 2008;375:341-5.

55. Singh SK, Wang M, Staudt C, Iliakis G. Post-irradiation chemical processing of DNA damage generates double-strand breaks in cells already engaged in repair. Nucleic Acids Res. 2011;39:8416-29.

56. Armengol G, Rojo F, Castellvi J, Iglesias C, Cuatrecasas M, Pons B, et al. 4Ebinding protein 1: a key molecular "funnel factor" in human cancer with clinical implications. Cancer Res. 2007;67:7551-5.

57. She QB, Halilovic E, Ye Q, Zhen W, Shirasawa S, Sasazuki T, et al. 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell. 2010;18:39-51.

58. Zindy P, Berge Y, Allal B, Filleron T, Pierredon S, Cammas A, et al. Formation of the eIF4F translation-initiation complex determines sensitivity to anticancer drugs targeting the EGFR and HER2 receptors. Cancer Res. 2011;71:4068-73.

59. Hsieh AC, Ruggero D. Targeting eukaryotic translation initiation factor 4E (eIF4E) in cancer. Clin Cancer Res. 2010;16:4914-20.

60. Dowling RJ, Topisirovic I, Fonseca BD, Sonenberg N. Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochim Biophys Acta. 2010;1804:433-9.

61. Moerke NJ, Aktas H, Chen H, Cantel S, Reibarkh MY, Fahmy A, et al. Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell. 2007;128:257-67.

62. Assouline S, Culjkovic B, Cocolakis E, Rousseau C, Beslu N, Amri A, et al. Molecular targeting of the oncogene eIF4E in acute myeloid leukemia (AML): a proof-of-principle clinical trial with ribavirin. Blood. 2009;114:257-60.

63. Hong DS, Kurzrock R, Oh Y, Wheler J, Naing A, Brail L, et al. A phase 1 dose escalation, pharmacokinetic, and pharmacodynamic evaluation of eIF-4E antisense oligonucleotide LY2275796 in patients with advanced cancer. Clin Cancer Res. 2011;17:6582-91.

64. ClinicalTrials.gov [database on the Internet]. Bethesda (MD): National Library of Medicine (US); 2000 - [cited 2012 August 1]; Available from: <u>http://clinicaltrials.gov/</u>

65. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12:21-35.

66. Ip CK, Wong AS. Exploiting p70 S6 kinase as a target for ovarian cancer. Expert Opin Ther Targets. 2012;16:619-30.

67. Hagner PR, Mazan-Mamczarz K, Dai B, Balzer EM, Corl S, Martin SS, et al. Ribosomal protein S6 is highly expressed in non-Hodgkin lymphoma and associates with mRNA containing a 5' terminal oligopyrimidine tract. Oncogene. 2011;30:1531-41.

68. Tang H, Hornstein E, Stolovich M, Levy G, Livingstone M, Templeton D, et al. Amino acid-induced translation of TOP mRNAs is fully dependent on phosphatidylinositol 3-kinase-mediated signaling, is partially inhibited by rapamycin, and is independent of S6K1 and rpS6 phosphorylation. Mol Cell Biol. 2001;21:8671-83.

69. Damgaard CK, Lykke-Andersen J. Translational coregulation of 5'TOP mRNAs by TIA-1 and TIAR. Genes and Development. 2011;25:2057-68.

70. Dorrello NV, Peschiaroli A, Guardavaccaro D, Colburn NH, Sherman NE, Pagano M. S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science. 2006;314:467-71.

71. Chang JH, Cho YH, Sohn SY, Choi JM, Kim A, Kim YC, et al. Crystal structure of the eIF4A-PDCD4 complex. Proceedings of the National Academy of Sciences of the United States of America. 2009;106:3148-53.

72. Singh P, Marikkannu R, Bitomsky N, Klempnauer KH. Disruption of the Pdcd4 tumor suppressor gene in chicken DT40 cells reveals its role in the DNA-damage response. Oncogene. 2009;28:3758-64.

73. Wedeken L, Singh P, Klempnauer KH. Tumor suppressor protein Pdcd4 inhibits translation of p53 mRNA. J Biol Chem. 2011;286:42855-62.

74. Bitomsky N, Wethkamp N, Marikkannu R, Klempnauer KH. siRNA-mediated knockdown of Pdcd4 expression causes upregulation of p21(Waf1/Cip1) expression. Oncogene. 2008;27:4820-9.

75. Averous J, Proud CG. When translation meets transformation: the mTOR story. Oncogene. 2006;25:6423-35.

76. Chakravarti A, Zhai G, Suzuki Y, Sarkesh S, Black PM, Muzikansky A, et al. The prognostic significance of phosphatidylinositol 3-kinase pathway activation in human gliomas. J Clin Oncol. 2004;22:1926-33.

77. Filonenko VV, Tytarenko R, Azatjan SK, Savinska LO, Gaydar YA, Gout IT, et al. Immunohistochemical analysis of S6K1 and S6K2 localization in human breast tumors. Exp Oncol. 2004;26:294-9.

78. Nozawa H, Watanabe T, Nagawa H. Phosphorylation of ribosomal p70 S6 kinase and rapamycin sensitivity in human colorectal cancer. Cancer Lett. 2007;251:105-13.

79. Sahin F, Kannangai R, Adegbola O, Wang J, Su G, Torbenson M. mTOR and P70 S6 kinase expression in primary liver neoplasms. Clin Cancer Res. 2004;10:8421-5.

80. Nakamura JL, Garcia E, Pieper RO. S6K1 plays a key role in glial transformation. Cancer Res. 2008;68:6516-23.

81. Sridharan S, Basu A. S6 kinase 2 promotes breast cancer cell survival via Akt. Cancer Res. 2011;71:2590-9.

82. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149:274-93.

83. Jin C, Rajabi H, Rodrigo CM, Porco JA, Jr., Kufe D. Targeting the eIF4A RNA helicase blocks translation of the MUC1-C oncoprotein. Oncogene. 2012.

84. Schatz JH, Oricchio E, Wolfe AL, Jiang M, Linkov I, Maragulia J, et al. Targeting cap-dependent translation blocks converging survival signals by AKT and PIM kinases in lymphoma. J Exp Med. 2011;208:1799-807.

85. Bordeleau ME, Robert F, Gerard B, Lindqvist L, Chen SM, Wendel HG, et al. Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model. J Clin Invest. 2008;118:2651-60.

86. Silvera D, Connolly E, Arju R, Venetu T, Schneider R. Targeting mRNA Translation to Enhance the Radiosensitivity of Inflammatory Breast Cancer Stem Cells Cancer Res. 2012;73(24 Suppl):P5-03-2.

87. Chresta CM, Davies BR, Hickson I, Harding T, Cosulich S, Critchlow SE, et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 2010;70:288-98.

88. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007;12:9-22.

89. Willems L, Tamburini J, Chapuis N, Lacombe C, Mayeux P, Bouscary D. PI3K and mTOR signaling pathways in cancer: new data on targeted therapies. Curr Oncol Rep. 2012;14:129-38.

90. Benjamin D, Colombi M, Moroni C, Hall MN. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov. 2011;10:868-80.

91. Choo AY, Blenis J. Not all substrates are treated equally: implications for mTOR, rapamycin-resistance and cancer therapy. Cell Cycle. 2009;8:567-72.

92. Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D, et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 2009;7:e38.

93. Hsieh AC, Costa M, Zollo O, Davis C, Feldman ME, Testa JR, et al. Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E. Cancer Cell. 2010;17:249-61.

94. Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem. 2009;284:8023-32.

95. Yu K, Shi C, Toral-Barza L, Lucas J, Shor B, Kim JE, et al. Beyond rapalog therapy: preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2. Cancer Res. 2010;70:621-31.

96. Choo AY, Yoon SO, Kim SG, Roux PP, Blenis J. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc Natl Acad Sci U S A. 2008;105:17414-9.

97. Albert JM, Kim KW, Cao C, Lu B. Targeting the Akt/mammalian target of rapamycin pathway for radiosensitization of breast cancer. Mol Cancer Ther. 2006;5:1183-9.

98. Murphy JD, Spalding AC, Somnay YR, Markwart S, Ray ME, Hamstra DA. Inhibition of mTOR radiosensitizes soft tissue sarcoma and tumor vasculature. Clin Cancer Res. 2009;15:589-96.

99. Cao C, Subhawong T, Albert JM, Kim KW, Geng L, Sekhar KR, et al. Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells. Cancer Res. 2006;66:10040-7.

100. Ekshyyan O, Rong Y, Rong X, Pattani KM, Abreo F, Caldito G, et al. Comparison of radiosensitizing effects of the mammalian target of rapamycin inhibitor CCI-779 to cisplatin in experimental models of head and neck squamous cell carcinoma. Mol Cancer Ther. 2009;8:2255-65.

101. Eshleman JS, Carlson BL, Mladek AC, Kastner BD, Shide KL, Sarkaria JN. Inhibition of the mammalian target of rapamycin sensitizes U87 xenografts to fractionated radiation therapy. Cancer Res. 2002;62:7291-7.

102. Rosenzweig KE, Youmell MB, Palayoor ST, Price BD. Radiosensitization of human tumor cells by the phosphatidylinositol3-kinase inhibitors wortmannin and LY294002 correlates with inhibition of DNA-dependent protein kinase and prolonged G2-M delay. Clin Cancer Res. 1997;3:1149-56.

103. Larsson O, Morita M, Topisirovic I, Alain T, Blouin MJ, Pollak M, et al. Distinct perturbation of the translatome by the antidiabetic drug metformin. Proc Natl Acad Sci U S A. 2012;109:8977-82.

104. Hayman TJ, Williams ES, Jamal M, Shankavaram UT, Camphausen K, Tofilon PJ. Translation initiation factor eIF4E is a target for tumor cell radiosensitization. Cancer Res. 2012;72:2362-72.

105. Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A, et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature. 2012;485:55-61.

106. Contessa JN, Hampton J, Lammering G, Mikkelsen RB, Dent P, Valerie K, et al. Ionizing radiation activates Erb-B receptor dependent Akt and p70 S6 kinase signaling in carcinoma cells. Oncogene. 2002;21:4032-41.

107. Li H, Lin J, Wang X, Yao G, Wang L, Zheng H, et al. Targeting of mTORC2 prevents cell migration and promotes apoptosis in breast cancer. Breast Cancer Res Treat. 2012;134:1057-66.

108. Hayman TJ, Kramp T, Kahn J, Jamal M, Camphausen K, Tofilon PJ. Competitive but not allosteric mTOR kinase inhibition enhances tumor cell radiosensitivity. Translational Oncology. 2013;6:In Press.

109. Hidalgo M. Pancreatic cancer. N Engl J Med. 2010;362:1605-17.

110. Raimondi S, Maisonneuve P, Lowenfels AB. Epidemiology of pancreatic cancer: an overview. Nat Rev Gastroenterol Hepatol. 2009;6:699-708.

111. Sharma C, Eltawil KM, Renfrew PD, Walsh MJ, Molinari M. Advances in diagnosis, treatment and palliation of pancreatic carcinoma: 1990-2010. World J Gastroenterol. 2011;17:867-97.

112. Iacobuzio-Donahue CA, Fu B, Yachida S, Luo M, Abe H, Henderson CM, et al. DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. J Clin Oncol. 2009;27:1806-13.

113. Wei D, Li H, Yu J, Sebolt JT, Zhao L, Lawrence TS, et al. Radiosensitization of human pancreatic cancer cells by MLN4924, an investigational NEDD8-activating enzyme inhibitor. Cancer Res. 2012;72:282-93.

114. Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho RA. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 2006;20:1218-49.

115. Bellizzi AM, Bloomston M, Zhou XP, Iwenofu OH, Frankel WL. The mTOR pathway is frequently activated in pancreatic ductal adenocarcinoma and chronic pancreatitis. Appl Immunohistochem Mol Morphol. 2010;18:442-7.

APPENDIX

Fold Increas	Gene Symbol	Gene Description			dehydrogenase, type III)
2.2	ABCA11	ATP-binding			
		cassette, sub-	1.8	AK B 7 A 7	aldo keto reductase
		family A (ABC1),	1.0	AKK/A2	family 7 member
		member 11			A2 (aflatoxin
		(pseudogene)			aldehvde
3.1	ABHD4	abhydrolase			reductase)
		domain containing	4.1	ALKBH	alkB, alkylation
1.0		4 abbydrologo			repair homolog (E.
1.9	ADHD0	domain containing			coli)
		6	1.9	AMFR	autocrine motility
1.5	ABT1	activator of basal			factor receptor
		transcription 1	1.7	ANAPC5	anaphase
1.8	ACAD8	acyl-Coenzyme A			promoting
		dehydrogenase	1.8	ANKRD	ankyrin reneat
		family, member 8	1.0	40	domain 40
1.8	ACAT1	acetyl-Coenzyme	4.5	ANXA11	annexin A11
		A acetyltransferase	1.5		adaptor related
		1 (acetoacetyl	1.5	Ar4M1	protein complex 4
		Coenzyme A			mu 1 subunit
17	ACOT7	and CoA	1.7	APBB1	amvloid beta (A4)
1./	ACO17	thioesterase 7			precursor protein-
1.5	АСОТ9	acyl-CoA			binding, family B,
1.0		thioesterase 9			member 1 (Fe65)
1.6	ACTR5	ARP5 actin-related	2	APLP2	amyloid beta (A4)
		protein 5 homolog			precursor-like
		(yeast)	1.5		protein 2
3	ADCK2	aarF domain	1.5	APOL3	apolipoprotein L, 3
1.0	ADDOU	containing kinase 2	1.5	APTX	aprataxin
1.8	ADPGK	ADP-dependent	2.9	ARF3	ADP-ribosylation
2.4	ADSI	adenylosuccinate			factor 3
2.4	ADSL	lvase	1.5	ARL6IP5	ADP-ribosylation-
2.2	AGPAT2	1-acylglycerol-3-			like factor 6
2.2	11011112	phosphate O-			interacting protein
		acyltransferase 2	10.8	ARPC2	J actin related
		(lysophosphatidic	10.0	ARI C2	protein 2/3
		acid			complex, subunit
		acyltransferase,			2, 34kDa
1.5	A TA (11	beta)	1.5	ARRB2	arrestin, beta 2
1.5	AIMIL	absent in	1.8	ASB13	ankyrin repeat and
15	AVDICO	aldo koto roduotoso			SOCS box-
1.5	AKKIC2	family 1 member			containing 13
		C2 (dihydrodiol	11.2	ASCIZ	ATM/ATR-
		dehvdrogenase 2:			Substrate Chk2-
		bile acid binding			Interacting Zn2+-
		protein; 3-alpha	2.2		finger protein
		hydroxysteroid	2.3	ATA183	AIPase, Na+/K+
					nansporting, beta 3

Table A1: List of	1124 genes	increasing	ly bound to	o eIF4E a	fter irradiation
	U	<u> </u>	2		

		polypeptide			protein receptor, type IA
1.7	ATP5B	ATP synthase, H+ transporting, mitochondrial F1	1.7	BNIP2	BCL2/adenovirus E1B 19kDa interacting protein
1.6	ATP5C1	polypeptide ATP synthase, H+ transporting,	1.9	BNIP3	BCL2/adenovirus E1B 19kDa interacting protein
1.5	ATP5L	mitochondrial F1 complex, gamma polypeptide 1 ATP synthase, H+	1.7	BRE	3 brain and reproductive organ-expressed
		transporting, mitochondrial F0 complex, subunit g	2.3	BTG1	(TNFRSF1A modulator) B-cell
2	ATP6V0 E	ATPase, H+ transporting, lysosomal 9kDa,	1.6	C10orf57	1, anti-proliferative chromosome 10
1.6	ATP6V1 D	V0 subunit e ATPase, H+ transporting,	2.7	C10orf61	57 chromosome 10
1.8	ATP8A2	V1 subunit D ATPase,	2	C10orf97	61 chromosome 10
		transporter-like, Class I, type 8A,	1.7	C11orf24	97 chromosome 11
1.8	ATPAF2	ATP synthase mitochondrial F1	4.8	C12orf41	chromosome 12 open reading frame
2.2	B4GALT	factor 2 UDP- Gal:betaGlcNAc	1.6	C12orf49	41 chromosome 12 open reading frame
	4	beta 1,4- galactosyltransfera	1.6	C12orf52	49 chromosome 12 open reading frame
8.6	BBP	Beta-amyloid binding protein	1.7	C14orf13 8	52 chromosome 14 open reading frame
2.1	BBS4	Bardet-Biedl	1.5	C14orf17	138 chromosome 14
1.7	BCAT1	branched chain aminotransferase 1,	1.5	2	open reading frame 172
2.6	BCL10	cytosolic B-cell CLL/lymphoma 10	1.5	C160rf45	open reading frame 45
4.7	BCL2L1 1	BCL2-like 11 (apoptosis	1.7	C16orf58	chromosome 16 open reading frame
3.5	BIRC5	baculoviral IAP repeat-containing 5	1.6	C17orf39	chromosome 17 open reading frame
2.1	BMPR1A	(survivin) bone morphogenetic	1.8	C19orf2	39 chromosome 19 open reading frame

15	C10arf50	2 ahramasama 10	1.6	C7orf26	chromosome 7 open reading frame
1.3	C1901130	open reading frame	10	GO M O	26
0 7	C1 or $f144$	50 shromosoma 1	10	C8orf30 A	open reading frame
8.2	C1011144	open reading frame			30A
		144	3	C9orf78	chromosome 9
7.4	Clorf163	chromosome 1			78
		163	5.4	C9orf82	chromosome 9
1.7	Clorf174	chromosome 1			open reading frame
		open reading frame	4.1	CABIN1	calcineurin binding
1.8	C1orf33	chromosome 1		CALL (1	protein 1
		open reading frame	6.1	CALM1	calmodulin l (phosphorylase
48	C20orf11	33 chromosome 20			kinase, delta)
1.0	1	open reading frame	4.3	CAMLG	calcium
17	C 20 (2) 4	111	23	CAMTA	calmodulin binding
1./	C200rf24	open reading frame	2.5	2	transcription
		24	4.7	C A CD2	activator 2
3	C20orf29	chromosome 20	4.7	CASP3	caspase 3, apoptosis-related
		open reading frame			cysteine peptidase
5.3	C20orf44	chromosome 20	1.8	CASP9	caspase 9,
		open reading frame			cysteine peptidase
3.8	C20orf45	chromosome 20	1.5	CAV2	caveolin 2
		open reading frame	2.2	CCDC13	coiled-coil domain
3	C21 or f01	45 chromosome 21	3.0	2 CCNA1	containing 132
5	02101191	open reading frame	5.9 1 7	CCNA2	cyclin A2
	~ ~ ~	91	1.7	CCNB1I	cyclin R1
4.8	C2ort43	chromosome 2	1.0	P1	interacting protein
		43	2.5		1
1.5	C3orf18	chromosome 3	2.5	CCNE2	cyclin E2
		open reading frame	1.9	ccs	for superoxide
1.7	C3orf37	chromosome 3			dismutase
		open reading frame	3	CD164	CD164 antigen,
1.8	C5orf30	3 / chromosome 5	1.7	CD59	CD59 antigen p18-
		open reading frame			20 (antigen
27	C(arfl)(30			identified by
3.1	C0011100	open reading frame			antibodies 16.3A5,
		106			EJ16, EJ30, EL32
4	C6orf49	chromosome 6	13	CD63	and G344)
		49	т.Ј	CD05	(melanoma 1
1.8	C6orf82	chromosome 6		aaa	antigen)
		open reading frame	1.6	CDC2	cell division cycle 2 G1 to S and G2
		02			to M

4.9	CDC25C	cell division cycle 25C	2	CLINT1	clathrin interactor 1
2.2	CDC42E P2	CDC42 effector protein (Rho CTPase binding) 2	1.5	CLN5	ceroid- lipofuscinosis,
1.6	CDCA4	cell division cycle associated 4	1.7	CLTA	clathrin, light
1.7	CDKL3	cyclin-dependent kinase-like 3	7.5	CNGA1	cyclic nucleotide gated channel
1.9	CDKN1 A	cyclin-dependent kinase inhibitor 1A	23	CNIH3	alpha 1 cornichon homolog
17	CDKN2C	(p21, Cip1)	1.0	CNKSR1	3 (Drosophila)
1.7	CDKN2C	kinase inhibitor 2C	1.9	CINKSKI	of kinase
		(p18, inhibits CDK4)			suppressor of Ras 1
1.5	CDKN3	cyclin-dependent kinase inhibitor 3	5.5	CNP	2',3'-cyclic nucleotide 3'
		(CDK2-associated dual specificity	9.9	COG2	phosphodiesterase component of
23	CDYL	phosphatase)			oligomeric golgi
2.5	CDIE	protein, Y-like	1.7	COPS2	COP9 constitutive
2	CENPB	centromere protein B, 80kDa			photomorphogenic homolog subunit 2
3.2	CENPO	centromere protein	(1	CODE7D	(Arabidopsis)
6.1	CEP57	centrosomal	0.1	COPS/B	photomorphogenic
15	CFPT1	protein 57kDa choline/ethanolami			homolog subunit 7B (Arabidonsis)
1.5	CEITI	ne	1.5	COPS8	COP9 constitutive
		phosphotransferase 1			photomorphogenic homolog subunit 8
2.3	CHCHD7	coiled-coil-helix-	1.0	COO2	(Arabidopsis)
		domain containing	1.9	C0Q2	homolog,
76	CHEK 1	7 CHK1 checkpoint			prenyltransferase
7.0	CHERT	homolog (S.	1.8	COTL1	coactosin-like 1
3.1	CHST10	pombe) carbohydrate	3.5	COX11	(Dictyostelium)
5.1	CHBTTO	sulfotransferase 10	5.5	COMIT	cytochrome c
1.8	CIDEC	cell death-inducing DFFA-like effector			oxidase assembly protein (yeast)
		c	1.5	COX7A2	cytochrome c
1.6	CINP	cyclin-dependent kinase 2-			oxidase subunit VIIa polypeptide 2
		interacting protein			(liver)
2.2	CIR	CBF1 interacting corepressor	1.8	COX/B	cytochrome c oxidase subunit
3.1	CLIC1	chloride			VIIb
		intracellular channel 1	1.5	CREB1	cAMP responsive
5.5	CLIC4	chloride			protein 1
		intracellular channel 4	2.3	CREG1	cellular repressor of E1A-stimulated

		genes 1	1.6	DCTD	dCMP deaminase
2.1	CRELD1	cysteine-rich with	2.2	DCTN4	dynactin 4 (p62)
		EGF-like domains	2.9	DCTN5	dynactin 5 (p25)
15.7	CRI1	I CREBBP/EP300 inhibitor 1	1.6	DDX19A	DEAD (Asp-Glu- Ala-As) box
1.5	CSNK1A 1	casein kinase 1, alpha 1	1.6	DDX28	polypeptide 19A DEAD (Asp-Glu-
6.2	CTBP2	C-terminal binding protein 2	2 1		Ala-Asp) box polypeptide 28
4.4	CTDSP1	CTD (carboxy- terminal domain,	5.1	DDA30	Ala-Asp) box polypeptide 50
		RNA polymerase II, polypeptide A)	1.7	DENND2 D	DENN/MADD domain containing
		small phosphatase 1		DEED	2D
2.5	CTDSP2	CTD (carboxy-	3.1	DFFB	DNA fragmentation
		terminal domain,			factor, 40kDa, beta
		II polypeptide A)			polypeptide
		small phosphatase			(caspase-activated
		2	1.8	DHRS12	DNase)
1.7	CTDSPL	CTD (carboxy-	1.0	DIIKS12	uctase (SDR
		RNA polymerase			family) member 12
		II polypeptide A)	2.4	DHRS3	dehydrogenase/red
		small phosphatase-			uctase (SDR
		like	0.2	DID	family) member 3
2.4	CTGLF1	centaurin, gamma-	9.5	DIP	protein
		like family,	1.6	DKFZP5	hypothetical
6.5	СТЦ	member l		64K0822	protein
0.5	CIII	(cystathionine			DKFZp564K0822
		gamma-lyase)	2.9	DMWD	dystrophia
1.7	CTSB	cathepsin B			myotonica-
1.8	CTSS	cathepsin S			containing WD
19	CXorf12	chromosome X	2.1	DNAJB1	DnaJ (Hsp40)
1.9	01101112	open reading frame	2.1	2	homolog,
		12			subfamily B,
3.9	CXorf15	chromosome X			member 12
		open reading frame 15	1.7	DNAJB9	DnaJ (Hsp40) homolog,
5.5	CYB5B	cytochrome b5			subfamily B,
		type B (outer	2.1	DNA ICI	member 9
		mitochondrial membrane)	2.1	DNAJCI 7	bomolog
2.5	CYB5R3	cvtochrome b5		7	subfamily C
2.0	012010	reductase 3			member 17
4.3	DBT	dihydrolipoamide	2	DNAJC8	DnaJ (Hsp40)
		branched chain			homolog,
24.0		transacylase E2			subfamily C,
24.9	DCLREI	DNA cross-link	1.0		member 8
	D	homolog S	1.9	DNAJUY	homolog
		cerevisiae)			subfamily C,

		member 9	4.3	EMP2	epithelial
4.7	DR1	down-regulator of			membrane protein
		transcription 1,	1.6	EN ID O C	2
		TBP-binding	1.6	ENDOG	endonuclease G-
		(negative cofactor	5.2		like l
		2)	5.3	ENOSFI	enolase
2.5	DSTN	destrin (actin			superfamily
		depolymerizing	17	ENOV1	member I
		factor)	1./	ENOAI	digulfide thiel
4.4	DTX2	deltex homolog 2			avahanger 1
		(Drosophila)	3 3	ENSA	endosulfine alpha
1.8	DUSP1	dual specificity	5.5	ENSA	
1.5		phosphatase I	2.3	EPOR	erythropoietin
1.5	DYNLLI	dynein, light chain,	1.0	FROM	receptor
1.0		LC8-type I	1.9	ERCC8	excision repair
1.8	DYNLII	dynein, light chain,			cross-
17		I ctex-type I			complementing
1./	DYNL13	dynein, light chain,			rodent repair
7 1	EDEC	T ctex-type 3			deficiency,
/.1	E2F0	E2F transcription			complementation
16	EDACO	lactor o	12.5	ETE1	group 8
1.0	EDAG9	binding site	12.3	EIFI	translation
		associated antigen			termination factor
		9			1
39	EEF1B2	eukarvotic	16	ETNK2	ethanolamine
0.9		translation	1.0		kinase 2
		elongation factor 1	2.8	ETS2	v-ets
		beta 2			erythroblastosis
1.5	EFCAB2	EF-hand calcium			virus E26
		binding domain 2			oncogene homolog
165.8	EFEMP2	EGF-containing			2 (avian)
		fibulin-like	3.2	ETV7	ets variant gene 7
		extracellular			(TEL2 oncogene)
		matrix protein 2	7	EXOC5	exocyst complex
3.2	EFNA4	ephrin-A4			component 5
1.8	EGFL9	EGF-like-domain,	2.5	EXOSC2	exosome
		multiple 9			component 2
3.7	EI24	etoposide induced	3.1	F2RL1	coagulation factor
		2.4 mRNA			II (thrombin)
1.7	EIF3S4	eukaryotic			receptor-like 1
		translation	1.5	FAF1	Fas (TNFRSF6)
		initiation factor 3,	•		associated factor 1
		subunit 4 delta,	2.6	FAHD2A	fumarylacetoacetat
		44kDa			e nydrolase domain
4	EIF5	eukaryotic	17	EAM105	formily with
		translation	1./	ramius	family with
		initiation factor 5		A	105 member A
1.7	EML2	echinoderm	2.4	EAM131	family with
		microtubule	2.4	Δ	sequence similarity
		associated protein			131 member A
2.2		like 2	Δ7	FAM484	family with
2.3	EMPI	epithelial	т./	1 1 111 10/ 1	sequence similarity
		memorane protein			48. member A
		1			

7.3	FAM57A	family with sequence similarity	2.1	FZR1	fizzy/cell division cycle 20 related 1
2.2	FAS	57, member A Fas (TNF receptor superfamily, member 6)	2	G3BP2	(Drosophila) GTPase activating protein (SH3 domain) binding
1.9	FASTK	Fas-activated			protein 2
2.1	EACTUD	serine/threonine kinase	12.8	GABAR APL1	GABA(A) receptor-associated
2.1	FASIKD 5	domains 5	2.7	GAD1	glutamate
1.8	FĂU	Finkel-Biskis-	2.7	GILDI	decarboxylase 1
		Reilly murine			(brain, 67kDa)
		sarcoma virus	1.9	GAS2L1	growth arrest-
		(FBR-MuSV)	2.7	CASE	specific 2 like 1
		expressed (fox	2.7	UA30	specific 6
		derived):	3.2	GCDH	glutaryl-Coenzyme
		ribosomal protein			A dehydrogenase
		S30	6.9	GDF11	growth
1.6	FBL	fibrillarin			differentiation
5	FBXL4	F-box and leucine-	1.5	GENY	factor 11
		rich repeat protein	1.5	3414	genetiionin 1
17	FBXO28	4 F-box protein 28	1.5	GGA2	golgi associated,
1.7	EDVO0	E box protein 0			gamma adaptin ear
1.7	FBAU9	F-box protein 9			containing, ARF
2.2	FBXWII	F-box and WD-40	1.5	CCU	binding protein 2
16	FDFT1	farnesyl-	1.5	GGH	gamma-giutamyi hydrolase
1.0		diphosphate			(conjugase,
		farnesyltransferase			folylpolygammagl
	EUDDA				utamyl hydrolase)
1.5	FKBP2	FK506 binding	1.6	GGPS1	geranylgeranyl
17	FL 12222	hypothetical			aipnosphate
1.7	2	protein FLJ22222	8.4	GGTL4	gamma-
1.8	FN3KRP	fructosamine-3-			glutamyltransferas
		kinase-related			e-like 4
1.5	FOVE	protein	1.8	GHITM	growth hormone
1.5	FOXF2	forkhead box F2			inducible
2.3	FRAG1	FGF receptor			protein
15	FTH1	ferritin beauty	1.8	GINS4	GINS complex
1.5	1,1111	nolvnentide 1			subunit 4 (Sld5
3.1	FTHP1	ferritin, heavy			homolog)
		polypeptide	2.2	GLUD1	glutamate
		pseudogene 1	Λ	CM2A	dehydrogenase l
2.5	FTL	ferritin, light	4	GM2A	GM2 ganghoside
76	FUSID1	polypeptide	16	GNAS	GNAS complex
7.0	r usir i	protein			locus
		(serine/arginine-	2.2	GNB1L	guanine nucleotide
		rich) 1			binding protein (G
					protein), beta
					porypeptide 1-like

1.9	GPR110	G protein-coupled receptor 110	2	HSBP1	heat shock factor
2.3	GPR172	G protein-coupled	1.5	HSD17B	hydroxysteroid
2.4	GPR30	G protein-coupled		/٢2	dehydrogenase 7
3	GPX7	glutathione	2.4	HSF2BP	pseudogene 2 heat shock
27	CPP10	peroxidase 7			transcription factor
2.1	OKDIU	receptor-bound	1.6	HSPA4	heat shock 70kDa
		protein 10			protein 4
1.7	GRK6	G protein-coupled	1.8	HSPBAP	HSPB (heat shock
2	CDDEL 1	receptor kinase 6		1	27kDa) associated
2	GRPELI	GrpE-like I, mitochondrial (F	1 9	HSPC111	protein 1 hypothetical
		coli)	1.7	IISICITI	protein HSPC111
3	GSK3A	glycogen synthase	3.4	HTATIP	HIV-1 Tat
		kinase 3 alpha			interacting protein,
4	GTDC1	glycosyltransferase			60kDa
		-like domain	1.9	IDH2	isocitrate
16	GTF2H2	containing i			(NADP+)
1.0	0112112	transcription factor			mitochondrial
		IIH, polypeptide 2,	2.1	IDH3B	isocitrate
		44kDa			dehydrogenase 3
1.9	GTF3C2	general			(NAD+) beta
		transcription factor	1.7	IDI1	isopentenyl-
		2 beta 110kDa			isomerase 1
1.9	GYG1	glycogenin 1	1.6	IER3	immediate early
11.8	HCP5	HI A complex P5		-	response 3
17	UEMV 1	Hamk	1.6	IGFBP7	insulin-like growth
1./		methyltransferase			factor binding
		family member 1	27	11D45	protein 7
5.3	HEXB	hexosaminidase B	2.7	11P43	nrotein 45
		(beta polypeptide)	2	IL11	interleukin 11
1.9	HIGD1A	HIG1 domain	2.1	IL11RA	interleukin 11
		family, member	2.1		receptor, alpha
16	HINT1	histidine triad	4.1	IL13RA1	interleukin 13
1.0	1111(11	nucleotide binding			receptor, alpha 1
		protein 1	1.8	IL15	interleukin 15
2.6	HIST1H1 E	histone 1, H1e	1.6	ING1	inhibitor of growth family member 1
1.7	HIST1H2	histone 1, H2bd	5.1	ING2	inhibitor of growth
2.1	BD HIST1H2	historie 1. H2bk	1.0	NG4	family, member 2 inhibitor of growth
2.1	RK	Instone 1, 1120k	1.7	11104	family member 4
1.8	HIST1H2	histone 1, H2bm	1.6	INSIG1	insulin induced
	BM	,			gene 1
39.4	HLA-F	major	5.4	IPO13	importin 13
		histocompatibility	1.7	IQCC	IQ motif
15	HMOX1	complex, class I, F	<i>.</i> .	10.375	containing C
1.3	Πίνιθαι	(decycling) 1	6.4	IRX5	iroquois homeobox protein 5

2	ISG20L2	interferon stimulated	2.8	LASS2	LAG1 longevity assurance homolog
3.9	IVD	20kDa-like 2 isovaleryl	63.1	LGALS1	lectin, galactoside- binding, soluble, 1
		Coenzyme A dehydrogenase	16	LGALS8	(galectin 1)
4.6	JOSD1	Josephin domain containing 1	1.0	LUNES	binding, soluble, 8 (galectin 8)
2.2	KATNA1	katanin p60 (ATPase-	1.6	LHFP	lipoma HMGIC fusion partner
2.0	VCTD12	containing) subunit A 1	2.8	LITAF	lipopolysaccharide -induced TNF
2.8	KCIDI3	tetramerisation	2	LOC2601	iactor
		domain containing 13	2	0	polymerase- transactivated
1.5	KCTD14	potassium channel	2.1	1.004412	protein 6
		domain containing	2.1	LUC4412 04	Similar to
		14	1.9	LOC5410	hypothetical
1.6	KDELR2	KDEL (Lys-Asp-		3	protein LOC54103
		Glu-Leu)	1.9	LONRF3	LON peptidase N-
		endoplasmic			terminal domain
		reticulum protein			and ring finger 3
		retention receptor 2	3	LRRFIP2	leucine rich repeat
20.5	KDELR3	KDEL (Lys-Asp-			(in FLII)
		Glu-Leu)			interacting protein
		reticulum protein	21	LSM5	2 LSM5 homolog
		retention receptor 3	2.1	Low	U6 small nuclear
1.5	KIAA040	KIAA0409			RNA associated
	9				(S. cerevisiae)
1.9	KIF22	kinesin family member 22	2.7	LYPLA1	lysophospholipase I
1.5	KLF2	Kruppel-like factor 2 (lung)	1.7	LYRM1	LYR motif containing 1
2	KLF4	Kruppel-like factor	2.3	MAFF	v-maf
20.4	VIEG	4 (gut) Kruppel like feator			musculoaponeuroti
29.4	KLF0	6			oncogene homolog
16	KPNA2	karvonherin alpha			F (avian)
1.0	1111112	2 (RAG cohort 1,	1.7	MANEA	mannosidase,
		importin alpha 1)			endo-alpha
1.5	KPNA6	karyopherin alpha	1.8	MAP2K4	mitogen-activated
		6 (importin alpha			protein kinase
		7)		1 C + DOILE	kinase 4
2.2	LANCLI	LanC lantibiotic	1.5	MAP2K5	mitogen-activated
		component C like			kinase 5
		1 (bacterial)	2.3	MAP2K7	mitogen-activated
2.1	LARP6	La	2.5		protein kinase
		ribonucleoprotein			kinase 7
		domain family,	1.7	MAP3K7	mitogen-activated
		member 6		IP2	protein kinase
					kinase kinase 7

100

		interacting protein 2			domain containing 5
2.1	MAPK12	mitogen-activated protein kinase 12	1.6	MGC143 76	hypothetical protein
1.5	MAPKA	mitogen-activated			MGC14376
	PK2	protein kinase-	1.9	MGC275	hypothetical
		activated protein		2	protein MGC2752
		kinase 2	1.5	MGST2	microsomal
1.5	MBD1	methyl-CpG			glutathione S-
		binding domain			transferase 2
		protein 1	1.5	MICA	MHC class I
1.5	MBIP	MAP3K12 binding			polypeptide-related
) (CED	inhibitory protein 1			sequence A
1.7	MCFP	mitochondrial	2.2	MIDTIPT	MID1 interacting
		carrier family			protein I
15	MOOLN	protein			(gastrulation
1.5	MCOLN 1	mucolipin 1			(zebrafish))
2.1		membrane cofector	2.2	MIS12	(Zeoransii)) MIS12 homolog
2.1	WICI	protein (CD46	2.3	WI1512	(vesst)
		trophoblast-	16	MKNK2	(yeast) MAP kinase
		lymphocyte cross-	1.0	101101 0102	interacting
		reactive antigen)			serine/threonine
1.5	MDH1	malate			kinase 2
		dehydrogenase 1,	1.5	MLL4	myeloid/lymphoid
		NAD (soluble)			or mixed-lineage
10.4	ME2	malic enzyme 2,			leukemia 4
		NAD(+)-	1.9	MLX	MAX-like protein
		dependent,			Х
		mitochondrial	1.9	MLYCD	malonyl-CoA
2	ME3	malic enzyme 3,			decarboxylase
		NADP(+)-	1.7	MMD	monocyte to
		dependent,			macrophage
2 2	MECD2	mitochondriai			differentiation-
5.5	MECF 2	hinding protein 2	1.5	MMP14	matrix
		(Rett syndrome)	1.5	1011011 14	metallonentidase
2.8	MED18	mediator of RNA			14 (membrane-
2.0	112210	polymerase II			inserted)
		transcription.	23	MMP9	matrix
		subunit 18			metallopeptidase 9
		homolog (yeast)			(gelatinase B,
5.3	MED9	mediator of RNA			92kDa gelatinase,
		polymerase II			92kDa type IV
		transcription,			collagenase)
		subunit 9 homolog	2.7	MPZL1	myelin protein
. .		(yeast)			zero-like 1
2.4	MEST	mesoderm specific	11.4	MRI	major
		transcript homolog			histocompatibility
17	METTL 2	(mouse)			complex, class 1-
1./	IVIELILZ	like 2	15	MRDI 2	mitochondrial
15	MFN2	mitofusin 2	1.3		ribosomal protein
1.7	MEGDS	major facilitator			L3
1./	WII'5D3	superfamily	2.1	MRPL9	mitochondrial
		Superionity			ribosomal protein

		L9			L13 (A52)
1.5	MRPS10	mitochondrial ribosomal protein S10	2.2	NAB1	NGFI-A binding protein 1 (EGR1 binding protein 1)
1.7	MRPS12	mitochondrial	1.7	NADK	NAD kinase
		ribosomal protein S12	1.8	NAPG	N-ethylmaleimide-
2.5	MRS2L	MRS2-like, magnesium homeostasis factor (S. cerevisiae)	1.5	NDUFA5	attachment protein, gamma NADH dehydrogenase
2.8	MT1H	metallothionein 1H			(ubiquinone) 1
40.7	MT1X	metallothionein 1X			alpha subcomplex,
1.7	MTA1	metastasis	3.6	NEK11	5, 13kDa NIMA (never in
3.7	MTHFD2	methylenetetrahydr			mitosis gene a)- related kinase 11
	L	dehydrogenase (NADP+	1.5	NEK2	NIMA (never in mitosis gene a)- related kinase 2
2.8	MTO1	dependent) 2-like mitochondrial translation	1.5	NFYC	nuclear transcription factor
		optimization 1 homolog (S. cerevisiae)	2.1	NGFRAP 1	Y, gamma nerve growth factor receptor
1.9	MTRR	5- methyltetrahydrofo late-homocysteine methyltransferase reductase	1.9	NGRN	associated protein 1 neugrin, neurite outgrowth
1.5	MVK	mevalonate kinase (mevalonic	1.8	NIPSNA P1	associated nipsnap homolog 1 (C elegans)
4.4	MXRA7	matrix-remodelling	2.5	NMD3	NMD3 homolog (S. cerevisiae)
1.6	МҮСВР	c-myc binding protein	1.8	NMT1	N- myristoyltransferas
1.9	MYD88	myeloid differentiation primary response	3.4	NMT2	e 1 N- myristoyltransferas
2.3	MYL4	gene (88) myosin, light polypeptide 4,	2.1	NOSIP	e 2 nitric oxide synthase interacting protein
2.6	MVNN	alkali; atrial, embryonic	1.5	NPAS2	neuronal PAS domain protein 2
2.0	MYOOD		6.8	NSDHL	NAD(P) dependent
2.5	MY U9B	myosin IXB			steroid
1.8	MYOHD 1	myosin head domain containing	2.1	NSMAF	dehydrogenase-like neutral
2.4	MYST1	I MYST histone			sphingomyelinase (N-SMase)
8.9	na	similar to 60S ribosomal protein	4	OAZ1	associated factor

		decarboxylase antizyme 1	1.7	PEX3	peroxisomal biogenesis factor 3
1.5	OR7E47 P	olfactory receptor, family 7,	2.4	PFKL	phosphofructokina se, liver
		subfamily E, member 47 pseudogene	1.7	PGF	placental growth factor, vascular endothelial growth
1.8	ORC4L	origin recognition complex, subunit	67	PGGT1R	factor-related protein
1.6	OTUB1	OTU domain, ubiquitin aldehyde binding 1	0.7	TOOTIB	geranylgeranyltran sferase type I, beta subunit
1.8	P2RX5	purinergic receptor	1.5	PHB	prohibitin
		P2X, ligand-gated ion channel, 5	1.5	PHF1	PHD finger protein 1
12.7	P2RY2	purinergic receptor P2Y, G-protein	1.9	PHF2	PHD finger protein 2
1.6	PABPN1	poly(A) binding protein, nuclear 1	1.6	PHTF1	putative homeodomain transcription factor
1.5	PAIP1	poly(A) binding			1
		protein interacting	15.2	PHTF2	putative
18	PAOX	protein 1 polyamine oxidase			homeodomain
1.0	111011	(exo-N4-amino)			transcription factor
2.2	PAX8	paired box gene 8	3.3	PIAS2	protein inhibitor of
1.5	PBX2	pre-B-cell			activated STAT, 2
		leukemia	7.7	PIGB	phosphatidylinosit
		transcription factor	2.5	DULICD	ol glycan, class B
1	PCGE2	2 polycomb group	2.5	PIK4CB	phosphatidylinosit
4	10012	ring finger 2			catalytic, beta
1.8	PCLO	piccolo			polypeptide
		(presynaptic	1.8	PIM2	pim-2 oncogene
•	DOOL OF	cytomatrix protein)	2.3	PIP5K1A	phosphatidylinosit
2.9	PCOLCE	procollagen C-			ol-4-phosphate 5-
	2	enhancer 2			kinase, type I,
2.1	РСТР	phosphatidylcholin	2	PKNOV1	alpha PBX/knotted 1
		e transfer protein	2	IKNOAI	homeobox 1
9	PCYT1A	phosphate	2.9	PLA2G4	phospholipase A2,
		cytidylyltransferas		В	group IVB
20		e 1, choline, alpha			(cytosolic)
2.9	r DCD2	death 2	3.3	PLAC1	placenta-specific 1
1.6	PDE10A	phosphodiesterase	1.5	PLAUR	plasminogen
		10A			activator,
1.9	PDS5A	PDS5, regulator of	1.5	ЫЕКН	urokinase receptor
		cohesion	1.5	M2	homology domain
		homolog A (S			containing, family
		cerevisiae)			M (with RUN
2.1	PEX16	peroxisomal			domain) member 2
		biogenesis factor	1.6	PLSCR3	phospholipid
		16			scramblase 3

2.1	PMAIP1	phorbol-12- myristate-13- acetate-induced protein 1	10	PPP3R1	protein phosphatase 3 (formerly 2B), regulatory subunit
18.4	PMP22	peripheral myelin protein 22			B, 19kDa, alpha isoform
1.9	PMS2L3	postmeiotic segregation			(calcineurin B, type I)
1.6	PMS2L5	increased 2-like 3 postmeiotic	2.2	PPT2	palmitoyl-protein thioesterase 2
		segregation increased 2-like 5	1.8	PRG1	proteoglycan 1, secretory granule
4.8	POLA2	polymerase (DNA directed), alpha 2	1.5	PRKAB1	protein kinase, AMP-activated,
2	POLDIP2	(70kD subunit) polymerase (DNA- directed) delta	2.4		catalytic subunit
		interacting protein	2.4		protein kinase D3
62	POLDIP3	2 polymerase (DNA-	4.3	PRKRIPI	protein 1 (IL11
0.2	10DDir J	directed), delta interacting protein	2.2	PRPF4	PRP4 pre-mRNA processing factor 4
94	POLE3	polymerase (DNA	5.(000000	homolog (yeast)
		directed), epsilon 3	5.6	PK5525	protease, serine, 25
		(p17 subunit)	1.5	PRUNE	prune homolog
1.6	PON3	paraoxonase 3	12.4	PSKH1	(Diosopilia) protein serine
2.7	POT1	POT1 protection of	12.1	1 01111	kinase H1
		telomeres 1	1.8	PSMA1	proteasome
		homolog (S.			(prosome,
16	DDA 1	pombe)			macropain)
1.0	IIAI	(inorganic) 1			subunit, alpha type,
2.3	PPFIA1	protein tyrosine	1.5	DSMA7	l protosomo
		phosphatase,	1.5	PSMA/	(prosome
		receptor type, f			(prosonie, macropain)
		polypeptide			subunit, alpha type,
		(PTPRF),			7
		(ling) alpha 1	5.5	PSMB4	proteasome
28	ΡΡΙΔ	(iipiiii), aipiia i nentidylprolyl			(prosome,
2.0	11174	isomerase A			macropain)
		(cyclophilin A)			subunit, beta type, Λ
1.6	PPID	peptidylprolyl	16	PSMC5	nroteasome
		isomerase D		151100	(prosome,
		(cyclophilin D)			macropain) 26S
2.5	PPP1R7	protein			subunit, ATPase, 5
		phosphatase 1,	2	PSMD4	proteasome
					(prosome,
4.8	PPP2R1B	protein			macropain) 268
-	_	phosphatase 2			ATPase 4
		(formerly 2A),	17	PSME1	proteasome
		regulatory subunit			(prosome,
		A (PR 65), beta			macropain)
		isotorm			

		activator subunit 1 (PA28 alpha)	1.9	RAD9A	RAD9 homolog A (S. pombe)
2	PTP4A1	protein tyrosine phosphatase type	1.7	RALA	v-ral simian leukemia viral oncogene homolog
1.6	PTPLAD	protein tyrosine			A (ras related)
	1	phosphatase-like A	6.5	RANBP3	RAN binding
		domain containing	17	RANGA	Ran GTPase
71	PTPN11	n protein tyrosine		P1	activating protein 1
/.1	1 11 1111	phosphatase, non-	2.2	RBMS2	RNA binding
		receptor type 11			motif, single
		(Noonan syndrome			interacting protein
117	PTPN2	1) protein tyrosine			2
11.,	1 11 112	phosphatase, non-	1.7	RBMX2	RNA binding motif
		receptor type 2		D GI 1	protein, X-linked 2
1.6	PTPN3	protein tyrosine	1.5	RCLI	RNA terminal
		phosphatase, non-			like 1
1.6	PTPN9	protein type 3	3.7	RCP9	Calcitonin gene-
		phosphatase, non-			related peptide-
		receptor type 9			receptor
3.9	PTPRA	protein tyrosine	23	RGS19	regulator of G-
		receptor type A	2.0	RODI	protein signalling
1.7	PTTG1	pituitary tumor-			19
		transforming 1	1.5	RHEB	Ras homolog
7.8	QKI	quaking homolog,	2.4	RHOA	enriched in brain
		KH domain RNA	2.4	KIIOA	family, member A
19	RAB2	RAB2 member	7	RHOBT	Rho-related BTB
- 17		RAS oncogene		B3	domain containing
		family	1.0	DUOT1	3
2.9	RAB23	RAB23, member	1.8	KHUTT	family member T1
		family	1.6	RHOT2	ras homolog gene
8.8	RABEP1	rabaptin, RAB			family, member T2
		GTPase binding	1.6	RIPK2	receptor-
-		effector protein 1			interacting serine-
2	RABL2B	RAB, member of	2	RNF146	ring finger protein
		family-like 2B	-	10,1110	146
1.8	RAC3	ras-related C3	1.5	RNF41	ring finger protein
		botulinum toxin	1.0	υνιρερι	41
		substrate 3 (rho	1.9	KNPEPL 1	arginyl
		hinding protein		1	(aminopeptidase
		Rac3)			B)-like 1
1.5	RAD17	RAD17 homolog	3.2	RPA1	replication protein
		(S. pombe)	2.4	DDI 12	A1, 70kDa
1.8	RAD51	RAD51 homolog	2.4	KPL13	L13
		(KecA nomolog, E. coli) (S. cerevisiae)	2.4	RPL18	ribosomal protein
1.7	RAD51A	RAD51 associated			L18
	P1	protein 1	2.6	RPL35	ribosomal protein

105

18.5 RPL35A ribosomal protein Carboxypeptidase 1 1.7 RPS10 ribosomal protein SDA1 domain 1.7 RPS10 ribosomal protein G3 defined colon 2 RPS14 ribosomal protein G3 defined colon 3 RPS06 ribosomal protein 4.8 SEC22LI SEC22 vesicle 3 RPS6KA ribosomal protein 4.8 SEC22LI SEC22 vesicle 4 S6 kinase, 90kDa, cerevisiae) SEC15 binding protein- 1 S6 kinase, 70kDa, 1.6 SEC18BP SEC18 binding 1.5 RPS6KB ribosomal protein 1.6 SECTSI secreted and 1.5 RRAGD Ras-related GTP 1.8 SECTMI secreted and 1.5 RRM2 ribosomal RNA 6.7 SEPHSI secretic 1.9 RRP15 ribosomal RNA 6.7 SEPHSI secretion 2 RRS1 RRS1 ribosome secretion regulating guanine 1.5 RY1 polypeptide 2.2 SET SET tr
1.7RPS10ribosomal protein S101.5SDAD1SDA1 domain containing 12RPS14ribosomal protein S142.1SDCCAserologically defined colon cancer antigen 31.9RPS20ribosomal protein S204.8SEC22L1SEC22 vesicle trafficking protein- like 1 (S. cerevisiae)3RPS6KAribosomal protein S204.8SEC22L1SEC22 vesicle trafficking protein- like 1 (S. cerevisiae)3RPS6KBribosomal protein S201.5SEC3A bomolog A (S. cerevisiae)1.5RPS6KBribosomal protein s201.6SEC1SBP1.5RRAGDRas-related GTP polypeptide 11.8SECTM11.5RRM2ribonucleotide reductase M2 polypeptide1.5SENP21.9RRP15ribosomal RNA processing 15 homolog (S. cerevisiae)6.7SEPHS12RRS1RRS1 ribosome biogenesis regulator homolog protein 11.5SET1.5RY1puttive nucleic acid binding protein 11.6SETDB11.5RY1puttive nucleic acid binding protein 11.6SETDB11.5S100A10S100 calcium A10 (annexin 11 light polypeptide1.6SIT domain containing 3A1.9S100A10S100 calcium (nuploid)1.6SIP1 seven in absentia homolog 11.9S100A10S100 calcium (nuploid)1.6SIP1 seven in absentia homolog 11.9S100A10S100 calcium
1.7 RPS10 ribosomal protein S10 2.1 SDCCA serologically serologically 2 RPS14 ribosomal protein S14 2.1 SDCCA G3 defined colon cancer antigen 3 1.9 RPS20 ribosomal protein S20 4.8 SEC22L1 SEC22 vesicle trafficking protein- like 1 (S. cerevisiae) 3 RPS6KA ribosomal protein 4 56 kinase, 90kDa, polypeptide 4 15.1 SEC23 A 1.5 RPS6KB ribosomal protein 4 56 kinase, 70kDa, polypeptide 1 1.6 SECISBP 1.5 RRAGD Ras-related GTP 1.8 SECTM1 secreted and transmembrane 1 1.5 RRM2 ribonclotide binding D 1.5 SENPS SUMO1/sentrin/S MT3 specific 1.9 RRP15 ribosomal RNA processing 15 homolog (S. cerevisiae) 6.7 SEPHS1 selenophosphate synthetase 1 2 RRS1 RRS1 RRS1 ribosome biogenesis 1.5 SET SET domain, mucleotide 1.7 RSU1 Ras suppressor protein 1 1.5 SET domain, bifurcated 1 set domain, bifurcated 1 1.9 S100A10 S100 calcium 1.9 SH2D3A SH2 domai
2 RPS14 ribosomal protein S14 2.1 SDCCA serologically defined colon cancer antigen 3 1.9 RPS20 ribosomal protein S20 4.8 SEC221.1 SEC22 vesicle trafficking protein- like 1 (S. cerevisiae) 3 RPS6KA ribosomal protein 4 56 kinase, 90kDa, polypeptide 4 15.1 SEC23A Sec23 homolog A (S. cerevisiae) 1.5 RPS6KB ribosomal protein 1 1.6 SECISBP SECIS binding polypeptide 1 4.5 RRAGD Ras-related GTP 1.8 SECTMI secreted and transmembrane 1 1.5 RRM2 riboucleotide polypeptide 1.5 SENP2 SUMO1/sentrin/S 1.9 RRP15 ribosomal RNA processing 15 homolog (S. cerevisiae) 2.2 SERGEF secretion regulator homolog (S. cerevisiae) 2 RRS1 RRS1 ribosome biogenesis regulator homolog (S. cerevisiae) 1.5 SET SET translocation (myeloid leukemia- associated) 1.7 RSU1 Ras suppressor protein 1 1.6 SET translocation (myeloid leukemia- associated) 1.9 S100A10 S100 calcium A10 (annexin II ligand, calpactin I, (ight polypeptide (D11)) 1.6 SIP1 SIP1
2RPS14ribosomal protein S14G3defined colon cancer antigen 31.9RPS20ribosomal protein S204.8SEC221SEC22 vesicle trafficking protein- like 1 (S. cerevisiae)3RPS6KAribosomal protein S6 kinase, 90kDa, polypeptide 415.1SEC23ASec23 homolog A (S. cerevisiae)1.5RPS6KBribosomal protein 11.6SECISBPSECIS binding polypeptide 14.5RRAGDRas-related GTP binding D1.8SECTM transmembrane 11.5RRM2ribosomal RNA processing 15 homolog (S. cerevisiae)6.7SEPHS12RRS1RRS1 ribosome biogenesis regulator homolog (S. cerevisiae)2.2SERGEF secretion regulating guanine nucleotide muleotid1.7RSU1 Ras suppressor protein RY-11.6SETDB1SET domain, bifurcated 1 secretion regulating factor 41.9S100A10S100 calcium binding protein (G. cerevisiae)1.6SETDB1SET domain, bifurcated 1 secretion regulating factor 41.9S100A10S100 calcium (moxin1.9SH2D3ASH2 domain, bifurcated 1 binding protein (Orosophila)1.9S100A10S100 calcium (moxin1.9SH2D3ASH2 domain, bifurcated 1 binding aA containing 3A
1.9 RPS20 ribosomal protein S20 4.8 SEC22L1 SEC22 vesicle trafficking protein like 1 (S. cerevisiae) 3 RPS6KA ribosomal protein 4 S6 kinase, 90kDa, polypeptide 4 15.1 SEC23 A Sec23 homolog A (S. cerevisiae) 1.5 RPS6KB ribosomal protein 1 1.6 SEC1S BP SEC1S binding protein 2 4.5 RRAGD Ras-related GTP binding D 1.6 SECTM1 secreted and transmembrane 1 1.5 RRM2 ribonucleotide reductase M2 polypeptide 1.5 SENP2 SUMO1/sentrin/S 1.9 RRP15 ribosomal RNA processing 15 homolog (S. cerevisiae) 2.2 SERGEF secretion regulating guanine nucleotide exchange factor 2 RRS1 RSS1 ribosome biogenesis regulator homolog (S. cerevisiae) 1.5 SET SET translocation (myeloid leukemia- associated) 1.5 RY1 putative nucleic acid binding protein RY-1 2.5 SF4 splicing factor 4 1.9 S100A10 S100 calcium binding protein 1.9 SH2D3A SH2 domain containing 3A 1.9 S100A10 S100 calcium binding protein 1.5 SIAH1 seven in absentia homolog 1 <td< td=""></td<>
1.9 RPS20 ribosomal protein S20 4.8 SEC22L1 SEC22 vesicle trafficking protein- like 1 (S. cerevisiae) 3 RPS6KA 4 ribosomal protein S6 kinase, 90kDa, polypeptide 4 15.1 SEC23A Sec23 homolog A (S. cerevisiae) 1.5 RPS6KB 1 S6 kinase, 70kDa, polypeptide 1 1.6 SECIS binding portein 2 protein 2 4.5 RRAGD Ras-related GTP binding D 1.8 SECTM1 secreted and transmembrane 1 1.5 RRM2 ribonucleotide reductase M2 polypeptide 1.5 SENP2 SUMOI/sentrin/S MT3 specific peptidase 2 1.9 RRP15 ribosomal RNA processing 15 homolog (S. cerevisiae) 6.7 SERGEF selenophosphate synthetase 1 2 RRS1 RRS1 ribosome biogenesis regulator homolog (S. cerevisiae) 1.5 SET SET translocation (myeloid leukemia- associated) 1.5 RY1 putative nucleic acid binding protein RY-1 2.5 SF4 splicing factor 4 1.9 S100A10 S100 calcium binding protein 1.9 SH2D3A SH2 domain containing 3A 1.9 S100A10 S100 calcium binding protein 1.6 SIP1 seven in absentia homolog 1 (Drosophila)
3 RPS6KA ribosonal protein rafficking protein-like 1 (S. cerevisiae) 3 RPS6KA ribosonal protein ls.1 SEC23A Sec23 homolog A (S. cerevisiae) 1.5 RPS6KB ribosonal protein 1.6 SEC1SBP SEC1S binding polypeptide 1 2 protein 2 4.5 RRAGD Ras-related GTP 1.8 SECTM1 secreted and transmembrane 1 1.5 RRM2 ribonucleotide 1.5 SENP2 SUMOI/sentrin/S 1.9 RRP15 ribosomal RNA protein 1 1.5 SERGEF secretion regulating guanine nucleotide exchange factor 4 2 RRS1 RRS1 ribosome biogenesis regulator homolog (S. cerevisiae) 2.2 SERGEF SECTM1 secretion regulating guanine nucleotide exchange factor 4 1.5 RY1 putative nucleic acid binding protein 1 1.5 SET DB1 SET domain, bifurcated 1 1.5 RY1 putative nucleic acid binding protein RY-1 2.5 SF4 splicing factor 4 1.9 S100A10 S100 calcium binding protein A10 (anexin II ligat, calpactin I, light polypeptide (Drosophila) 1.6 SIP1 seven in absentia homolog 1 (Drosophila) 1.9 S100A
3 RPS6KA like 1 (S. cerevisiae) 3 A S6 kinase, 90kDa, polypeptide 4 15.1 SEC23A Sec23 homolog A (S. cerevisiae) 1.5 RPS6KB ribosomal protein 1.6 SECISBP SECIS binding polypeptide 1 1.5 RRAGD Ras-related GTP 1.8 SECTMI secreted and transmembrane 1 1.5 RRM2 ribonucleotide reductase M2 polypeptide 1.5 SENP2 SUMOI/sentrin/S 1.9 RRP15 ribosomal RNA processing 15 homolog (S. cerevisiae) 2.2 SERGEF selenophosphate synthetase 1 2 RRS1 RRS1 ribosome biogenesis regulator homolog (S. cerevisiae) 2.2 SERGEF secretion regulating guanine nucleotide exchange factor (myeloid leukemia-associated) 1.7 RSU1 Ras suppressor protein 1 1.5 SET SET domain, bifurcated 1 1.5 RY1 putative nucleic acid binding protein RY-1 2.5 SF4 splicing factor 4 1.9 S100A10 S100 calcium binding protein A10 (anexin II light polypeptide (Drosophila) 1.9 SH2D3A SH2 domain containing 3A 1.9 S100A10 S100 calcium binding protein A10 (anexin II light polypeptide (Drosophila)
436 kinase, 90kDa, polypeptide 4istance, 20kDa, sec23 homolog A (S. cerevisiae)1.5RPS6KBribosomal protein 11.6SEC1SB 24.5RRAGDRas-related GTP binding D1.6SEC1S binding protein 24.5RRAGDRas-related GTP binding D1.8SECTM11.5RRM2ribonucleotide reductase M2 polypeptide1.5SENP21.9RRP15ribosomal RNA processing 15 homolog (S. cerevisiae)6.7SEPHS12RRS1RRS1 ribosome biogenesis regulator homolog1.5SET2RRS1RRS1 ribosome protein 11.6SETDB11.5RY1putative nucleic acid binding protein RY-11.6SETDB11.9S100A10S100 calcium binding protein A10 (annexin II light polypeptide1.6SIP11.9S100A10S100 calcium binding protein A10 (annexin II light polypeptide1.6SIP11.6SIP1seven in absentia homolog 1 (Drosophila) (Drosophila)1.6
1.5RPS6KB ribosomal protein15.1SEC23A (S. cerevisiae)1.5RRAGD binding D16SECISBP 2SECIS binding protein 24.5RRAGD binding D1.6SECISBP 2SECIS binding protein 21.5RRM2ribonucleotide reductase M2 polypeptide1.5SENP2SUMO1/sentrin/S MT3 specific peptidase 21.9RRP15ribosomal RNA processing 15 homolog (S. cerevisiae)6.7SEPHS1 SERGEFselenophosphate synthetase 12RRS1RRS1 ribosome biogenesis regulator homolog (S. cerevisiae)1.5SET SETSET translocation (myeloid leukemia- associated)1.5RY1putative nucleic acid binding protein RY-11.6SETDB1 SET domain, bifurcated 11.9S100A10S100 calcium binding protein A10 (annexin II light polypeptide1.5SIPH1.9S100A10S100 calcium binding protein (n11))1.6SIPH1.6SIPHseven in absentia homolog 1 (Drosophila) (Drosophila)
1.5 RPS6KB ribosomal protein (S. cerevisiae) 1 S6 kinase, 70kDa, polypeptide 1 1.6 SECISBP SECIS binding 4.5 RRAGD Ras-related GTP 1.8 SECTM1 secreted and transmembrane 1 1.5 RRM2 ribonucleotide reductase M2 1.5 SENP2 SUMO1/sentrin/S polypeptide 1.5 SENP15 ribosomal RNA processing 15 6.7 SEPHS1 selenophosphate synthetase 1 2 RRS1 RRS1 ribosome biogenesis regulator homolog 2.2 SERGEF secretion regulating guanine nucleotide exchange factor 1.7 RSU1 Ras suppressor protein 1 1.6 SETDB1 SET domain, bifurcated 1 1.5 RY1 putative nucleic acid binding protein RY-1 2.5 SF4 splicing factor 4 1.9 S100A10 S100 calcium binding protein 1.9 SH2D3A SH2 domain containing 3A 1.9 S100A10 S100 calcium binding protein 1.5 SIAH1 seven in absentia homolog 1 1.9 S100A10 S100 calcium binding protein 1.6 SIAH1 seven in absentia homolog 1 1.9 S10
1S6 kinase, 70kDa, polypeptide 11.6SECISBPSECIS binding protein 24.5RRAGDRas-related GTP binding D1.8SECTM1secreted and transmembrane 11.5RRM2ribonucleotide reductase M2 polypeptide1.5SENP2SUMO1/sentrin/S MT3 specific peptidase 21.9RRP15ribosomal RNA processing 15 homolog (S. cerevisiae)6.7SEPHS1selenophosphate synthetase 12RRS1RRS1 ribosome biogenesis regulator homolog (S. cerevisiae)1.5SETSET translocation (myeloid leukemia- associated)1.5RY1putative nucleic acid binding protein RY-11.6SETDB1SET domain, bifurcated 1 splicing factor 41.9S100A10S100 calcium binding protein A10 (annexin II light polypeptide1.9SIAH1 seven in absentia homolog 1 (Drosophila)1.9S100A10S100 calcium binding protein (p11))1.6SIP1 survival of motor
4.5RRAGDRas-related GTP binding D1.8SECTM1 SECTM1secreted and transmembrane 11.5RRM2ribonucleotide reductase M2 polypeptide1.5SENP2SUMO1/sentrin/S MT3 specific peptidase 21.9RRP15ribosomal RNA processing 15 homolog (S. cerevisiae)6.7SEPHS1selenophosphate synthetase 12RRS1RRS1 ribosome biogenesis regulator homolog (S. cerevisiae)2.2SERGEFsecretion regulating guanine nucleotide exchange factor (myeloid leukemia- associated)1.7RSU1Ras suppressor protein 11.5SETSET domain, bifurcated 1 sifurcated 1 sifurcated 1
4.5RRAGDRas-related GTP binding D1.8SECTM1secreted and transmembrane 11.5RRM2ribonucleotide reductase M2 polypeptide1.5SENP2SUMOI/sentrin/S MT3 specific peptidase 21.9RRP15ribosomal RNA processing 15 cerevisiae)6.7SEPHS1selenophosphate synthetase 12RRS1RRS1 ribosome biogenesis regulator homolog (S. cerevisiae)2.2SERGEFsecretion regulating guanine nucleotide exchange factor1.7RSU1Ras suppressor protein 11.6SETDB1SET domain, bifurcated 1 splicing factor 41.9S100A10S100 calcium binding protein A10 (annexin II light polypeptide (D11))1.6SIP1seven in absentia homolog 1 (Drosophila)
binding Dtransmembrane 11.5RRM2ribonucleotide reductase M2 polypeptide1.5SENP2SUMO1/sentrin/S MT3 specific peptidase 21.9RRP15ribosomal RNA processing 15 homolog (S. cerevisiae)6.7SEPHS1selenophosphate synthetase 12RRS1RRS1 ribosome biogenesis regulator homolog (S. cerevisiae)2.2SERGEFSET translocation (myeloid leukemia- associated)1.7RSU1Ras suppressor protein 11.5SETSET domain, bifurcated 11.5RY1putative nucleic acid binding protein RY-11.6SETDB1SET domain, bifurcated 11.9S100A10S100 calcium binding protein A10 (annexin II light polypeptide (D11))1.6SIPIsurvival of motor
1.5 RRM2 ribonucleotide reductase M2 polypeptide 1.5 SENP2 SUMO1/sentrin/S MT3 specific peptidase 2 1.9 RRP15 ribosomal RNA processing 15 homolog (S. cerevisiae) 6.7 SEPHS1 selenophosphate synthetase 1 2 RRS1 RRS1 ribosome biogenesis regulator homolog (S. cerevisiae) 2.2 SERGEF secretion regulating guanine nucleotide exchange factor 1.7 RSU1 Ras suppressor protein 1 1.5 SET SET translocation (myeloid leukemia- associated) 1.5 RY1 putative nucleic acid binding protein RY-1 1.6 SETDB1 SET domain, bifurcated 1 1.9 S100A10 S100 calcium binding protein 1.9 SH2D3A SH2 domain containing 3A A10 (annexin II ligand, calpactin I, light polypeptide 1.6 SIPH survival of motor
1.9RRP15reductase M2 polypeptideMT3 specific peptidase 21.9RRP15ribosomal RNA processing 15 homolog (S. cerevisiae)6.7SEPHS1selenophosphate synthetase 12RRS1RRS1 ribosome biogenesis regulator homolog (S. cerevisiae)2.2SERGEFsecretion regulating guanine nucleotide exchange factor1.7RSU1Ras suppressor protein 11.5SETSET translocation (myeloid leukemia- associated)1.5RY1putative nucleic acid binding protein RY-11.6SETDB1SET domain, bifurcated 11.9S100A10S100 calcium binding protein A10 (annexin II light polypeptide (D11))1.6SIP1seven in absentia homolog 1 (Drosophila)
1.9RRP15polypeptide ribosomal RNA processing 15 homolog (S. cerevisiae)6.7SEPHS1peptidase 2 selenophosphate synthetase 12RRS1RRS1 ribosome biogenesis regulator homolog (S. cerevisiae)2.2SERGEFsecretion regulating guanine nucleotide exchange factor2RRS1RRS1 ribosome biogenesis regulator homolog (S. cerevisiae)1.5SETSET translocation (myeloid leukemia- associated)1.7RSU1Ras suppressor protein 11.6SETDB1SET domain, bifurcated 11.5RY1putative nucleic acid binding protein RY-11.6SET domain, containing 3A1.9S100A10S100 calcium binding protein A10 (annexin II light polypeptide (p11))1.6SIP1survival of motor
1.9RRP15Index and RNA processing 15 homolog (S. cerevisiae)6.7SEPHS1selenophosphate synthetase 12RRS1RRS1 ribosome biogenesis regulator homolog (S. cerevisiae)2.2SERGEFsecretion regulating guanine nucleotide exchange factor2RRS1RRS1 ribosome biogenesis regulator homolog (S. cerevisiae)1.5SETSET translocation (myeloid leukemia- associated)1.7RSU1Ras suppressor protein 11.6SETDB1SET domain, bifurcated 11.5RY1putative nucleic acid binding protein RY-11.6SETDB1SET domain, bifurcated 11.9S100A10S100 calcium binding protein A10 (annexin II ligand, calpactin I, light polypeptide (p11))1.6SIP1survival of motor
processing 15 homolog (S. cerevisiae)Synthetase 1 secretion regulating guanine nucleotide exchange factor2RRS1RRS1 ribosome biogenesis regulator homolog (S. cerevisiae)1.5SETSET translocation (myeloid leukemia- associated)1.7RSU1Ras suppressor protein 11.6SETDB1SET domain, bifurcated 1 bifurcated 11.5RY1putative nucleic acid binding protein RY-11.6SET domain, bifurcated 11.9S100A10S100 calcium binding protein A10 (annexin II ligand, calpactin I, light polypeptide1.6SIP11.6SIP11.6SIP1 (Drosophila)
homolog (S. cerevisiae)2.2SERGEFsecretion regulating guanine nucleotide exchange factor2RRS1RRS1 ribosome biogenesis regulator homolog (S. cerevisiae)1.5SETSET translocation (myeloid leukemia- associated)1.7RSU1Ras suppressor protein 11.6SETDB1SET domain, bifurcated 1 bifurcated 11.5RY1putative nucleic acid binding protein RY-11.6SETDB1SET domain, bifurcated 11.9S100A10S100 calcium binding protein A10 (annexin II light polypeptide (D11))1.6SIP1survival of motor
2RRS1RRS1 ribosome biogenesis regulator homolog (S. cerevisiae)regulating guanine nucleotide exchange factor1.7RSU1Ras suppressor protein 11.5SETSET translocation (myeloid leukemia- associated)1.5RY1putative nucleic acid binding protein RY-11.6SETDB1SET domain, bifurcated 11.9S100A10S100 calcium binding protein A10 (annexin II light polypeptide (p11))1.6SIP1survival of motor
2RRS1RRS1 ribosome biogenesis regulator homolog (S. cerevisiae)nucleotide exchange factor1.7RSU1Ras suppressor protein 11.5SETSET translocation (myeloid leukemia- associated)1.5RY1putative nucleic acid binding protein RY-11.6SETDB1SET domain, bifurcated 11.9S100A10S100 calcium binding protein A10 (annexin II light polypeptide (p11))1.6SIP1survival of motor
biogenesis regulator homolog (S. cerevisiae)1.5SETsexchange factor set translocation (myeloid leukemia- associated)1.7RSU1Ras suppressor protein 11.6SETDB1SET domain, bifurcated 11.5RY1putative nucleic acid binding protein RY-11.6SETDB1SET domain, bifurcated 11.9S100A10S100 calcium binding protein A10 (annexin II light polypeptide (p11))1.6SIP1survival of motor
regulator homolog (S. cerevisiae)1.5SETSET translocation (myeloid leukemia- associated)1.7RSU1Ras suppressor protein 1leukemia- associated)1.5RY1putative nucleic acid binding protein RY-11.6SET DB11.9S100A10S100 calcium binding protein A10 (annexin II ligand, calpactin I, light polypeptide (p11))1.6SIP11.6SIP1I.6SIP1
(S. cerevisiae)(myeloid leukemia- associated)1.7RSU1Ras suppressor protein 1leukemia- associated)1.5RY1putative nucleic acid binding protein RY-11.6SETDB12.5SF4splicing factor 41.9S100A10S100 calcium binding protein A10 (annexin II ligand, calpactin I, light polypeptide1.6SIAH11.6SIP1uriveloid (Drosophila)
1.7 RSU1 Ras suppressor protein 1 leukemia- associated) 1.5 RY1 putative nucleic acid binding protein RY-1 1.6 SETDB1 SET domain, bifurcated 1 1.9 S100A10 S100 calcium binding protein A10 (annexin II ligand, calpactin I, light polypeptide (p11)) 1.6 SIP1 survival of motor
protein 1associated)1.5RY1putative nucleic1.6SETDB1SET domain, bifurcated 1acid binding protein RY-12.5SF4splicing factor 41.9S100A10S100 calcium binding protein1.9SH2D3ASH2 domain containing 3AA10 (annexin II ligand, calpactin I, light polypeptide15.6SIAH1seven in absentia homolog 1 (Drosophila)1.6SIP1survival of motor
1.5 RY1 putative nucleic acid binding protein RY-1 1.6 SETDB1 SET domain, bifurcated 1 1.9 S100A10 S100 calcium binding protein A10 1.9 SH2D3A SH2 domain containing 3A A10 (annexin II ligand, calpactin I, light polypeptide (p11)) 1.6 SIP1 survival of motor
acid binding protein RY-1 1.9 S100A10 S100 calcium binding protein A10 (annexin II ligand, calpactin I, light polypeptide (p11)) 1.6 SIP1 survival of motor
protein RY-12.5SF4splicing factor 41.9\$100 calcium1.9\$H2D3A\$H2 domain containing 3Abinding protein15.6\$IAH1seven in absentia homolog 1 (Drosophila)light polypeptide(Drosophila)(p11))1.6\$IP1
1.9\$100A10\$100 calcium binding protein1.9\$H2D3A\$H2 domain containing 3AA10 (annexin II ligand, calpactin I, light polypeptide (p11))15.6\$IAH1seven in absentia homolog 1 (Drosophila)1.9\$IAH1 binding protein15.6\$IAH1seven in absentia homolog 1 (Drosophila)
binding protein A10 (annexin II ligand, calpactin I, light polypeptide (p11)) binding protein containing 3A seven in absentia homolog 1 (Drosophila) survival of motor
A10 (annexin II 15.6 SIAH1 seven in absentia ligand, calpactin I, light polypeptide (Drosophila) (p11)) 1.6 SIP1 survival of motor
ligand, calpactin I, light polypeptide (p11)) 1.6 SIP1 survival of motor
light polypeptide (Drosophila) (p11)) 1.6 SIP1 survival of motor
(p11)) 1.6 SIP1 survival of motor
2 S100A4 S100 calcium neuron protein
binding protein A4 interacting protein
(calcium protein,
calvasculin, 19.4 SIR13 sirtuin (silent
metastasin, murine mating type
placental homolog) information
3.1 SAP30 sin3-associated regulation 2
polypepude, nomolog) 3 (5.
30KDa cerevisiae)
1/0.9 SAPS2 SAPS dollarin 2.2 SIA2 sine ocurs
12 SCAPP2 sequences recenter homelog 2
2.5 SUAND2 Stavenger receptor notificities (Drecondia)
2 SCMH1 sex comb on 18 SI C12A solute corrier
midleg homolog 1 0 family 12
(Drosonhila) (notaesium/ablarid
e transporters)

		member 9	28.4	SLCO1B	solute carrier
				3	organic anion
2.9	SLC22A	solute carrier			transporter family,
	14	family 22 (organic	1 5	CM A DO	SMAD moth and
		cation transporter),	1.5	SMAD2	SMAD, mothers
		member 14			against DPP
1.6	SLC25A	solute carrier			nomolog 2 (Dragarhila)
	14	family 25	2.5	SMADC	(Drosophila)
		(mitochondrial	5.5	SMARC	Swi/SNF felated,
		carrier, brain),		D2	main associated,
		member 14			regulator of
7.2	SLC25A	solute carrier			chromatin
	5	family 25			subfamily d
		(mitochondrial			sublatility u,
		carrier; adenine	1.5	SMN1	survival of motor
		nucleotide	1.5	Sivilyi	neuron 1 telomeric
		translocator),	1.5	SNAI2	snail homolog ?
2		member 5	1.5	SINAIZ	(Drosophila)
2	SLC3IA	solute carrier	2.2	SNRPD1	small nuclear
	1	family 31 (copper	2.2	SIGN DI	ribonucleoprotein
		transporters),			D1 polypeptide
2	SI C21 A	member I			16kDa
Z	SLC5TA	family 21 (conner	2.8	SNRPE	small nuclear
	2	transporters)		Since 2	ribonucleoprotein
		member 2			polypeptide E
16	SI C35A	solute carrier	1.5	SNRPF	small nuclear
1.0	31000000000000000000000000000000000000	family 35 (LIDP-			ribonucleoprotein
	2	galactose			polypeptide F
		transporter)	1.6	SNRPG	small nuclear
		member A?			ribonucleoprotein
1.5	SLC35C2	solute carrier			polypeptide G
1.0	5200002	family 35, member	2.4	SOCS2	suppressor of
		C2			cytokine signaling
3.5	SLC35F2	solute carrier			2
		family 35, member	2.1	SOD1	superoxide
		F2			dismutase 1,
1.5	SLC38A	solute carrier			soluble
	6	family 38, member			(amyotrophic
		6			lateral sclerosis 1
1.5	SLC39A	solute carrier			(adult))
	6	family 39 (zinc	2.3	SORBS3	sorbin and SH3
		transporter),			domain containing
		member 6	5 0.0	CODEL	3
3.9	SLC39A	solute carrier	59.9	SORTI	sortilin l
	8	family 39 (zinc	1.8	SPCS3	signal peptidase
		transporter),			complex subunit 3
		member 8			homolog (S.
2	SLC41A	solute carrier			cerevisiae)
	3	family 41, member	2.6	SPHK1	sphingosine kinase
1.0		3		an	1
1.8	SLC43A	solute carrier	26.2	SPOP	speckle-type POZ
	1	1 tamily 43, member	22 <i>-</i>	CDD3/4	protein
		1	32.5	SPRY4	sprouty nomolog 4
					(Drosophila)

4.2	SRD5A1	steroid-5-alpha- reductase, alpha			associated factor, 80kDa
		polypeptide 1 (3- oxo-5 alpha-steroid delta 4-	1.6	TANK	TRAF family member-associated NFKB activator
		dehydrogenase alpha 1)	2.5	TAX1BP	Tax1 (human T-
9	SREBF2	sterol regulatory		5	type I) binding
		transcription factor	2.2	TBC1D2	TBC1 domain
	CDI	2		2A	family, member
2.1	SRI	sorcin			22A
1.5	SRP72	signal recognition particle 72kDa	3.1	TBC1D8	TBC1 domain family, member 8
1.7	SRPK1	SFRS protein kinase 1			(with GRAM domain)
58.5	SRPRB	signal recognition particle receptor, B subunit	1.5	TCEAL1	transcription elongation factor A (SII)-like 1
2.4	SS18	synovial sarcoma translocation,	2.3	TCFL5	transcription factor-like 5 (basic
		chromosome 18			helix-loop-helix)
14.9	SSBP3	single stranded	2.6	TCP11L1	t-complex 11
		DNA binding	1.5	TEGT	(mouse) like 1
19	STAT1	signal transducer	1.5	ILUI	gene transcript
1.7	SIAII	and activator of			(BAX inhibitor 1)
		transcription 1,	3.2	TENC1	tensin like C1
		91kDa			domain containing
1.7	STK11	serine/threonine			phosphatase
		kinase 11 (Peutz-	2.0	TEAM	(tensin 2)
91	STK6	serine/threonine	2.9	TTAN	A mitochondrial
7.1	5110	kinase 6	9.5	TFCP2	transcription factor
12.5	STOM	stomatin			CP2
10.7	STX18	syntaxin 18	1.5	TFDP1	transcription factor Dp-1
1.5	SULTIA	sulfotransferase	7.9	TFDP2	transcription factor
	1	1A nhenol-			Dp-2 (E2F
		preferring, member			dimerization
		1	51	TFPI	tissue factor
7.9	SULT1A	sulfotransferase	0.1		pathway inhibitor
	3	family, cytosolic,			(lipoprotein-
		IA, phenol-			associated
		3			coagulation
1.8	SUMO3	SMT3 suppressor	17	TGDS	TDP glucose 4.6
		of mif two 3	1./	TODS	dehvdratase
		homolog 3 (yeast)	8.3	THAP10	THAP domain
3.7	SYPL1	synaptophysin-like			containing 10
10	TAF6	ι ΤΑΕ6 ΡΝΔ	1.6	THG1L	tRNA-histidine
1.7	TAPU	polymerase II.			guanylyltransferase
		TATA box binding			1-like (S. cerevisiae)
		protein (TBP)-			

2.5	TIA1	TIA1 cytotoxic	2	TPD52	tumor protein D52
		granule-associated	3.2	TPM4	tropomyosin 4
		RNA binding	1.5	TRAM1	translocation
34	TIMM17	translocase of inner			associated
5.4	A	mitochondrial			membrane protein
	21	membrane 17			1
		homolog A (yeast)	2.2	TRAPPC	trafficking protein
1.5	TINF2	TERF1 (TRF1)-	1.0	2 TD 4 DDC	particle complex 2
		interacting nuclear	1.9	I RAPPC	trafficking protein
		factor 2	27	4 TRBC1	T cell recentor beta
4.2	TK2	thymidine kinase	2.7	mber	constant 1
1.0	TMDIMA	2, mitochondrial	2.5	TRIM68	tripartite motif-
1.9	1 WIDIWI4	BAX inhibitor			containing 68
		motif containing 4	2.7	TSPAN3	tetraspanin 3
1.5	TMCO1	transmembrane	5.2	TSPAN9	tetraspanin 9
		and coiled-coil	3.8	TTC19	tetratricopeptide
		domains 1	2.0		repeat domain 19
1.5	TMED9	transmembrane	1.8	TXNL2	thioredoxin-like 2
		emp24 protein	10.6	UBA52	ubiquitin A-52
		transport domain			residue ribosomal
1.0	TMDO	containing 9			protein fusion
1.9					product 1
9	IMSBI0	thymosin, beta 10	1.8	UBAP1	ubiquitin
13218.	TNFRSF	tumor necrosis			associated protein
9	11B	factor receptor	1.5	LIDE2D2	l uhi quitin
		superfamily,	1.5	UBE2D3	ubiquitin-
		(osteoprotegerin)			enzyme E2D 3
1.8	TNFRSF	tumor necrosis			(UBC4/5 homolog,
	14	factor receptor			yeast)
		superfamily,	4.5	UBE2G1	ubiquitin-
		member 14			conjugating
		(herpesvirus entry			enzyme E2G 1
2.6		mediator)			(UBC/ homolog,
2.6	INFSFIU	factor (ligand)	2.8	UBE211	ubiquitin-
		superfamily	2.0	ODL231	conjugating
		member 10			enzyme E2, J1
2	TNFSF13	tumor necrosis			(UBC6 homolog,
		factor (ligand)			yeast)
		superfamily,	4.4	UBE2L3	ubiquitin-
		member 13			conjugating
2.3	TNFSF9	tumor necrosis	1.5	LIDE 2L 6	enzyme E2L 3
		factor (ligand)	1.5	UBE2L0	ubiquitin-
		member 9			enzyme E2L 6
37	TOR 1 A	torsin family 1	1.5	UBE2N	ubiquitin-
5.7	101111	member A (torsin			conjugating
		A)			enzyme E2N
2.6	TOR1AI	torsin A interacting			(UBC13 homolog,
	P1	protein 1		I IN DOCTO	yeast)
3.5	TP53AP1	TP53 activated	2.5	UBE2V1	ubiquitin-
		protein 1			conjugating

		enzyme E2 variant 1	7.9	YWHAQ	tyrosine 3- monooxygenase/tr
2.3	UBE2V2	ubiquitin-			yptophan 5-
		conjugating			monooxygenase
		enzyme E2 variant			activation protein,
15	LIDE2D	2 ubiquitin protoin	2.4	7021114	theta polypeptide
1.5	UBE3B	ligaça E2P	5.4	ZC3H14	zinc linger CCCH-
3 5	UBI 3	ubiquitin-like 3	1.5	ZDHHC6	zinc finger
5.5	UDUD		1.5	ZDIIICO	DHHC-type
1.9	UBXD6	UBX domain			containing 6
17	UCHI 51	UCHI 5 interacting	1.7	ZFP36	zinc finger protein
1.7	P	protein			36, C3H type,
1.7	UFC1	ubiquitin-fold			homolog (mouse)
		modifier	6.3	ZNF133	zinc finger protein
		conjugating			133 (clone pHZ-
		enzyme 1			13)
3.5	UNG2	uracil-DNA	1.7	ZNF143	zinc finger protein
		glycosylase 2	1.5	ZNIECO	143 (clone pHZ-1)
2.4	USP3	ubiquitin specific	1.5	LINFZZ	22 (KOX 15)
17	VDD1	peptidase 3	36	ZNF232	zinc finger protein
1./	VBPI	von Hippel-Lindau	2.0		232
8 5	VEGE	vascular	1.7	ZNF239	zinc finger protein
0.5	VEOI	endothelial growth			239
		factor	1.5	ZNF277	zinc finger protein
1.6	VGF	VGF nerve growth			277
		factor inducible	2.7	ZNF278	zinc finger protein
6.4	VPS37C	vacuolar protein	27	7NE24	2/8 zing finger protein
	1 ID II A	sorting 37C (yeast)	27	ZINI 34	$34 (K \cap X 32)$
1.6	VRK3	vaccinia related	4.5	ZNF410	zinc finger protein
37	WASDID	Wiskott Aldrich			410
5.2	WASIII	syndrome protein	13	ZNF435	zinc finger protein
		interacting protein			435
13.8	WBP5	WW domain	57.8	ZNF45	zinc finger protein
		binding protein 5	4.2	7115472	45
1.7	WDR23	WD repeat domain	4.2	ZNF4/3	Zinc linger protein
5 0		23	83	ZNF673	zinc finger protein
5.8	WDR62	w D repeat domain	0.5	2101075	673
10	WHSC1	02 Wolf Hirschhorn	25	ZNF768	zinc finger protein
1.9	WIISCI	syndrome			768
		candidate 1	2	ZNF9	zinc finger protein
6.1	WIPI2	WD repeat			9 (a cellular
		domain,			retroviral nucleic
		phosphoinositide			acid binding
		interacting 2	1.6	7SCAN5	protein)
2.1	WSB2	WD repeat and	1.0	LSCANS	SCAN domain
		SOCS box-			containing 5
3.6	YAD1	VPA binding			- channing b
5.0	ΛΠΟΙ	nrotein 1 GTPase	Not		
2.1	XAF1	XIAP associated	Bound		
		factor-1	to		
			Bound		

		ASTE1	asteroid homolog 1
AASDHP	aminoadinate-		(Drosophila)
PT	semialdehyde	B2M	beta-2-
	dehydrogenase-		microglobulin
	phosphopantethein	B4GALT	UDP-
	yl transferase	1	Gal:betaGlcNAc
ABCA2	ATP-binding		beta 1,4-
	cassette, sub-		galactosyltransiera
	family A (ABC1),	DAIAD2	BALL associated
	member 2	DAIAI 2	protein 2
ACVRI	activin A receptor,	BECN1	beclin 1 (coiled-
		DECIT	coil, myosin-like
ADAMI	ADAM		BCL2 interacting
0	domain 10		protein)
ADH5	alcohol	BFSP1	beaded filament
nibilis.	dehydrogenase 5		structural protein
	(class III), chi		1, filensin
	polypeptide	BNIP3L	BCL2/adenovirus
AGA	aspartylglucosamin		E1B 19kDa
	idase		interacting protein
AK2	adenylate kinase 2		3-like
ALDH1B	aldehyde	BRD2	bromodomain
1	dehydrogenase 1	PPD0	bromodomain
	family, member B1	BKD7	containing 9
ALDH3A	aldehyde	BRMS1	breast cancer
2	dehydrogenase 3	DRUGT	metastasis
	family, member		suppressor 1
	A2	BSDC1	BSD domain
ALMSI	Alstrom syndrome		containing 1
AMD1	l adenosylmethionin	BTF3	basic transcription
AMDI	e decarboxylase 1		factor 3
ANGPT1	angionoietin 1	BTN3A3	butyrophilin,
	anlurin renest		subfamily 3,
	domain 49		DUD1 budding
APOL 2	apolipoprotein I 2	BUBI	DODI budding
A DC	aponpoprotein E, 2		henzimidazoles 1
APS	adaptor protein		homolog (yeast)
	homology and sre	BZW1	basic leucine
	homology 2		zipper and W2
	domains		domains 1
ARIH2	ariadne homolog 2	C14orf11	chromosome 14
	(Drosophila)	8	open reading frame
ARL8B	ADP-ribosylation		118
	factor-like 8B	C15orf39	chromosome 15
ARNTL2	aryl hydrocarbon		open reading frame
	receptor nuclear	Clearfy	39 shromosomo 16
	translocator-like 2	C160f134	chromosome 16
AKSB	aryisultatase B		34
ASF1A	ASF1 anti-	C16orf5	chromosome 16
	silencing function	0100115	open reading frame
	I homolog A (S.		5
	cerevisiae)	C17orf70	chromosome 17

	open reading frame	CCNJ	cyclin J
C1 (100	70	CCNT2	cyclin T2
Clorf108	open reading frame	CDCA8	cell division cycle associated 8
C1orf121	chromosome 1 open reading frame	CDH11	cadherin 11, type 2, OB-cadherin (osteoblast)
C1orf166	chromosome 1 open reading frame	CDK10	cyclin-dependent kinase (CDC2- like) 10
C1QDC1	C1q domain containing 1	CDKAL1	CDK5 regulatory subunit associated
C20orf18	chromosome 20 open reading frame 18	CDS2	cDP- diacylglycerol
C20orf3	chromosome 20 open reading frame 3		synthase (phosphatidate cytidylyltransferas e) 2
C21orf55	chromosome 21 open reading frame 55	CDV3	CDV3 homolog (mouse)
C2orf24	chromosome 2	CERK	ceramide kinase
	open reading frame 24	CES2	carboxylesterase 2 (intestine, liver)
C2orf56	chromosome 2 open reading frame 56	CFLAR	CASP8 and FADD-like apoptosis regulator
C4orf16	chromosome 4 open reading frame	CH25H	cholesterol 25- hydroxylase
C6orf62	chromosome 6 open reading frame 62	Сненьз	coiled-coil-helix domain containing 3
C6orf68	chromosome 6 open reading frame 68	CHST4	carbohydrate (N- acetylglucosamine 6-O)
C7orf25	chromosome 7 open reading frame	CLK1	sulfotransferase 4 CDC-like kinase 1
C8orf41	25 chromosome 8 open reading frame 41	CLN8	ceroid- lipofuscinosis, neuronal 8 (epilepsy
CANT1	calcium activated nucleotidase 1		progressive with mental retardation)
CASP10	caspase 10, apoptosis-related cysteine peptidase	COG5	component of oligomeric golgi complex 5
CBX3	chromobox homolog 3 (HP1 gamma homolog,	COL1A1 COX15	collagen, type I, alpha 1 COX15 homolog,
CCDC59	Drosophila) coiled-coil domain		cytochrome c oxidase assembly
CCNG2	cyclin G2	CRBN	protein (yeast) cereblon

CREM	cAMP responsive		dehydrogenase
	element modulator	DHRS7	dehydrogenase/red
CRKL	v-crk sarcoma	Dints	uctase (SDR
	virus CT10		family) member 7
	oncogene homolog	DKFZP5	hypothetical
	(avian)-like	6400523	protein
CSGlcA-	chondroitin sulfate		DKFZp56400523
Т	glucuronyltransfera	DLG1	discs. large
	se		homolog 1
CSNK1E	casein kinase 1,		(Drosophila)
	epsilon	DLX4	distal-less
CTAGE5	CTAGE family,		homeobox 4
	member 5	DNAJB4	DnaJ (Hsp40)
CTBP1	C-terminal binding		homolog.
	protein 1		subfamily B.
CTSO	cathepsin O		member 4
CUL1	cullin 1	DNAJC1	DnaJ (Hsp40)
CVorf24	ahromogomo V	0	homolog.
CA01154		-	subfamily C
	open reading frame		member 10
CVorf45	34 shromosomo V	DRAM	damage-regulated
CA0f145	chromosome X	210101	autophagy
	open reading frame		modulator
CVD561	43	DYRK3	dual-specificity
C1B301	cytochrome b-361		tvrosine-(Y)-
CYP26B	cytochrome P450,		phosphorylation
1	family 26,		regulated kinase 3
	subfamily B,	ECHDC1	enovl Coenzyme A
	polypeptide 1		hvdratase domain
CYP2R1	cytochrome P450,		containing 1
	family 2,	EDIL3	EGF-like repeats
	subfamily R,	-	and discoidin I-like
	polypeptide 1		domains 3
CYP51A	cytochrome P450,	EGFR	Epidermal growth
1	family 51,		factor receptor
	subfamily A,		(EGFR)
	polypeptide 1	EIF2AK1	eukaryotic
DARS2	aspartyl-tRNA		translation
	synthetase 2		initiation factor 2-
	(mitochondrial)		alpha kinase 1
DBF4	DBF4 homolog (S.	EIF4E2	eukaryotic
	cerevisiae)		translation
DCUN1	DCN1, defective in		initiation factor 4E
D2	cullin neddylation		family member 2
	1, domain	ELAVL1	ELAV (embryonic
	containing 2 (S.		lethal, abnormal
	cerevisiae)		vision,
DCUN1	DCN1, defective in		Drosophila)-like 1
D4	cullin neddylation		(Hu antigen R)
	I, domain	EPB41L4	erythrocyte
	containing 4 (S.	В	membrane protein
DD	cerevisiae)		band 4.1 like 4B
DDX17	DEAD (Asp-Glu-	EPN2	epsin 2
	Ala-Asp) box	ETENU	electron
	polypeptide 17	ЕІГДП	transferring
DHODH	dihydroorotate		nansiening-

	flavoprotein		catalytic, 3
	dehydrogenase	GALNT1	UDP-N-acetyl-
EVA1	epithelial V-like antigen 1		alpha-D- galactosamine:poly
EXOC7	exocyst complex component 7		peptide N- acetylgalactosamin
EXTL2	exostoses (multinle)-like 2		yltransferase 1 (GalNAc-T1)
EXTL3	exostoses	GAPDH	glyceraldehyde-3-
FAIM	(multiple)-like 3 Fas apoptotic		dehydrogenase
111111	inhibitory	GCAT	glycine C-
	molecule		acetyltransferase
FAM32A	family with		(2-amino-3-
	sequence similarity		ketobutyrate
	32, member A		ligase)
FAM46C	family with	GCLC	alutamate-cysteine
	sequence similarity	Gele	ligase catalytic
EAMCOA	46, member C Eamily with		subunit
FAM09A	Failing with sequence similarity	GCNT1	glucosaminyl (N-
	69 member A		acetyl) transferase
FANCC	Fanconi anemia.		1, core 2 (beta-1,6-
	complementation		N-
	group C		acetylglucosaminyl
FARP1	FERM, RhoGEF		transferase)
	(ARHGEF) and	GDAP2	ganglioside
	pleckstrin domain		differentiation
	protein 1		associated protein
	(chondrocyte-		2
EDVI 2	E box and lauging	GLB1L	galactosidase, beta
FDAL2	rich repeat protein		1-like
	2	GLMN	glomulin, FKBP
FBXL5	F-box and leucine-		associated protein
	rich repeat protein	GL01	glyoxalase I
	5	GMFB	glia maturation
FEZ2	fasciculation and		factor, beta
	elongation protein	GNA11	guanine nucleotide
DUDDIA	zeta 2 (zygin II)		binding protein (G
FKBP14	FK506 binding		protein), alpha 11
EI 11110	protein 14, 22 KDa	CNI 1	(Gq class)
	protein FL 11184	UNLI	binding protein-
FNBP3	formin binding		like 1
1 (DI)	protein 3	GOLGA1	golgi autoantigen.
FOXK2	forkhead box K2		golgin subfamily a,
FRAT1	frequently		1
110111	rearranged in	GRB2	growth factor
	advanced T-cell		receptor-bound
	lymphomas	<u></u>	protein 2
FZD6	frizzled homolog 6	GTF2F2	general
	(Drosophila)		transcription factor
G6PC3	glucose 6		30kDa
	phosphatase,		JUNDA

GTF2H1	general	IDS	iduronate 2-
	transcription factor		sulfatase (Hunter
	IIH, polypeptide 1,	IFITS	syndrome)
CTE2C4	62KDa	IF113	interferon-induced
011304	transcription factor		tetratricopentide
	IIIC polypeptide		repeats 3
	4. 90kDa	IFNAR1	interferon (alpha.
H2AFY	H2A histone		beta and omega)
	family, member Y		receptor 1
H3F3A	H3 histone, family	IGFBP3	insulin-like growth
	3A		factor binding
HADHB	hydroxyacyl-		protein 3
	Coenzyme A	IL2/KA	interleukin 2/
	ketoacyl-	IMPDH2	IMP (inosine
	Coenzyme A		monophosphate)
	thiolase/enovl-		dehydrogenase 2
	Coenzyme A	IQCB1	IQ motif
	hydratase		containing B1
	(trifunctional	IRAK4	interleukin-1
	protein), beta		receptor-associated
UED C4	subunit	ITOLI	kinase 4
HERC4	hect domain and	IICH	itchy homolog E3
HEE	hemochromatosis		ligase (mouse)
		ITM2B	integral membrane
HIP2	nuntingtin interacting protein	11111213	protein 2B
	2	ITPK1	inositol 1,3,4-
HIST2H2	histone 2. H2be		triphosphate 5/6
BE			kinase
HLA-	major	JMJD4	jumonji domain
DPA1	histocompatibility	V A TNID 1	containing 4
	complex, class II,	KAINBI	repeat containing)
	DP alpha 1		subunit B 1
HMGAI	high mobility	KCNS3	potassium voltage-
HMGN4	high mobility		gated channel,
IIIIIOIN	group nucleosomal		delayed-rectifier,
	binding domain 4		subfamily S,
HNRPDL	heterogeneous		member 3
	nuclear	KCTD2	potassium channel
	ribonucleoprotein		tetramerisation
	D-like		2
HTATSF	HIV TAT specific	KIAA049	Z KIAA0494
	tactor l	4	
позг	homolog (S	KIAA049	KIAA0495
	nomblog (S.	5	
НҮРК	Huntingtin	KIAA065	KIAA0652
	interacting protein	2	
	K	KIAA089	K1AA0892
IDH3A	isocitrate	2 VIA A007	KIA A OO74 - DNIA
	dehydrogenase 3	К ІАА097 Л	KIAAU7/4 IIIKINA
	(NAD+) alpha	KIAA112	KIAA1128

8			binding domain
KIAA201	KIAA2010		protein 4
0		MCM4	MCM4
KLHL12	kelch-like 12		minichromosome
	(Drosophila)		maintenance
KRIT1	KRIT1, ankyrin		deficient 4 (S.
	repeat containing	MDU2	cerevisiae)
LAP3	leucine	MDH2	debydrogenase 2
LDU	aminopeptidase 3		NAD
LBH	limb bud and heart		(mitochondrial)
	development	MELK	maternal
	nomolog (mouse)	WEEK	embryonic leucine
LDLRAP 1	linoprotein		zipper kinase
1	receptor adaptor	MGAT2	mannosyl (alpha-
	protein 1		1,6-)-glycoprotein
LEPR	lentin recentor		beta-1,2-N-
LEDROT			acetylglucosaminyl
LEPROT	leptin receptor		transferase
	transprint	MGC127	hypothetical
I EPROT	lentin recentor	60	protein
LLI KOI	overlanning		MGC12760
LI	transcript-like 1	MGC326	hypothetical
LIF	leukemia	2	protein MGC3262
211	inhibitory factor	MIPEP	mitochondrial
	(cholinergic		intermediate
	differentiation	MUDNI	pepudase makorin ring
	factor)	MKKNI	finger protein 1
LMF2	lipase maturation	MMP24	matrix
	factor 2	WIWII 27	metallonroteinase
LOC1274	similar to laminin		24 (membrane-
06	receptor 1		inserted)
	(ribosomal protein	MNS1	meiosis-specific
	SA)		nuclear structural 1
LOC1453	LOC145387	MON1B	MON1 homolog B
87			(yeast)
LOC6392	transposon-derived	MOSPD1	motile sperm
0	Buster3		domain containing
1000224	transposase-like		1
LUC9224	nypoinetical	MRP63	mitochondrial
9 I PYN	leunavin		ribosomal protein
	icupaxiii		63
M6PK	mannose-6-	MSRB2	methionine
	(action domandant)		sulfoxide reductase
ΜΑΕΑ	(cation dependent)	METOI	B2
MALA	erythroblast	MSTOT	(Dresenhile)
	attacher	МТСИІ	(Drosophila)
MAP2K3	mitogen-activated	WITCHI	carrier homolog 1
WIAI 2KJ	nrotein kinase		(C_{algans})
	kinase 3		(C. CICgalls) methylenetetrahydr
MAP3K7	mitogen-activated	WITH D2	ofolate
	protein kinase		dehvdrogenase
	kinase kinase 7		(NADP+
MBD4	methyl-CpG		dependent) ?
			acpendent) 2,

	methenyltetrahydro folate cyclohydrolase	PAICS	phosphoribosylami noimidazole carboxylase, phosphoribosylami
MTUS1	mitochondrial		noimidazole succinocarboxamid
WI USI	tumor suppressor 1		e synthetase
MUM1	melanoma associated antigen	PAK4	p21(CDKN1A)- activated kinase 4
MXD4	(mutated) 1 MAX dimerization	PAM	peptidylglycine alpha-amidating
NDRG3	protein 4 NDRG family	PARP16	monooxygenase poly (ADP-ribose)
	member 3		polymerase family,
NET1	neuroepithelial cell		member 16
	transforming gene	PARVA	parvin, alpha
NEIG		PBLD	phenazine
NFIC	(CCAAT-binding		biosynthesis-like protein domain
	transcription		containing
	factor)	PDCD4	programmed cell
NFIL3	nuclear factor,		death 4 (neoplastic
	regulated		transformation
NFKBIA	nuclear factor of	PDE8A	nhosphodiesterase
	kappa light	I DLOA	8A
	polypeptide gene	PDGFA	platelet-derived
	enhancer in B-cells		growth factor alpha
	inhibitor, alpha		polypeptide
NFYA	nuclear	PDLIM5	PDZ and LIM
	transcription factor		domain 5
NIDAGI	Y, alpha	PHLDA1	pleckstrin
NR2C1	nuclear receptor		homology-like
	Subfamily 2, group		domain, family A,
NR2C2	nuclear receptor	DICO	nember 1 nhosphatidulinosit
NR2C2	subfamily 2 group	FIGO	ol glycan class O
	C. member 2	PIP5K2A	nhosphatidylinosit
NR2F6	nuclear receptor	111011211	ol-4-phosphate 5-
	subfamily 2, group		kinase, type II,
	F, member 6		alpha
NRF1	nuclear respiratory	PIP5K2B	phosphatidylinosit
	factor 1		ol-4-phosphate 5-
NUDT13	nudix (nucleoside		kinase, type II,
	diphosphate linked	DIZDO	beta
	molety A)-type	РКР3	plakophilin 3
OSR2	odd-skipped	PLA2G6	phospholipase A2,
051(2	related 2		group VI
	(Drosophila)		(cytosolic,
PACS2	phosphofurin		calcium-
	acidic cluster	рі <i>К</i> Л	nolo-like kinase 4
	sorting protein 2	1 L/174	(Drosophila)
		POLR2D	polymerase (RNA)
			II (DNA directed)

	polypeptide D	PTEN	phosphatase and tensin homolog
PPCS	phosphopantotheno		(mutated in multiple advanced
	ylcysteine		cancers 1)
	synthetase	PTENP1	phosphatase and
PPIC	peptidylprolyl		tensin homolog
	isomerase C		(mutated in
	(cyclophilin C)		multiple advanced
PPM1G	protein		cancers 1)
	phosphatase 1G		nseudogene 1
	(formerly 2C),	PTN	pseudogene i pleiotrophin
	magnesium-	I IIN	(henerin hinding
	dependent, gamma		(nepatin binding
	isoform		growth factor o,
PPP2CB	protein		neurite growth-
	phosphatase 2	DTTC11D	pionotnig factor 1)
	(formerly 2A),	riidiir	transforming 1
	catalytic subunit,		interacting protein
	beta isoform	DLIS 2	niteracting protein
PRDM2	PR domain	1035	synthese 3
	containing 2, with	PVCO1	synthase 5
	ZNF domain	11001	1 (Drosonhila)
PRDX3	peroxiredoxin 3		PAP11A member
PRE13	nreimplantation	KABIIA	RADITA, Illellidel
I KLIJ	protein 3		family
PRKACB	protein kinase	D A D 77D	DAD27D member
i idd ieb	cAMP-dependent	KAD27D	RAD27D, memoer
	catalytic beta		family
PRPS1	phosphoribosyl	RAB8A	$\mathbf{R} \mathbf{A} \mathbf{R} \mathbf{S} \mathbf{A}$ member
110.01	pyrophosphate	KADOA	RADOA, member RAS oncogene
	synthetase 1		family
PRR14	proline rich 14	RABIE	RAB interacting
DDCC2		it ibii	factor
PK553	protease, serine, 3	RAD511	RAD51-like 3 (S
DOMOO	(mesotrypsin)	3	cerevisiae)
PSMC3	proteasome	RAPIGD	RAPI GTP-GDP
	(prosome,	S1	dissociation
	macropain) 268	51	stimulator 1
DOMODI	subunit, A I Pase, 3	RBMS3	RNA hinding
PSMC31	PSMC3 interacting	KBW55	motif single
P DCMD14	protein		stranded
PSMD14	proteasome		interacting protein
	(prosome,	RCC1	regulator of
	macropain) 268	Reel	chromosome
	Subunit, non-		condensation 1
DCDC1	A I Pase, 14	REXO2	REX2 RNA
PSPCI	paraspeckie	REA02	exonuclease ?
DOTDIDO	component I		homolog (S
PSTPIP2	proline-serine-		corevisiae)
	threonine	RGI 2	ral guanine
	pnosphatase	KOL2	nucleotide
	interacting protein		dissociation
DTDOOL	Z		stimulator-like?
R1D221	phosphatiaylserine	RGS10	regulator of G-
	synthase 1	100510	protein signalling
			r-oromonomening

	10	RPS28	ribosomal protein
RINTI	RAD50 interactor	RPS6	ribosomal protein
RIOK3	RIO kinase 3	RTF1	S6 Rtf1. Paf1/RNA
RIPK1	receptor		polymerase II
	(INFRSF)- interacting serine-		component,
D) [[1]	threonine kinase 1		homolog (S. cerevisiae)
KNFII	11	SAP18	sin3-associated
RNF13	ring finger protein		polypeptide, 18kDa
RNF139	ring finger protein	SC4MOL	sterol-C4-methyl oxidase-like
RNF216	ring finger protein	SCAMP1	secretory carrier membrane protein
RNF24	ring finger protein	SCAMP5	1 secretory carrier
RNF4	ring finger protein		membrane protein 5
RNF44	ring finger protein 44	SCML1	sex comb on midleg-like 1
RP4-	hypothetical	SCRN3	(Drosophila) secernin 3
092D3.1	LOC728621	SCYE1	small inducible
RPL12	ribosomal protein L12		cytokine subfamily E, member 1
RPL13A	ribosomal protein L13a		(endothelial monocyte-
RPL15	ribosomal protein L15	SCYL3	activating) SCY1-like 3 (S.
RPL18A	ribosomal protein	SDC2	cerevisiae) syndecan 2
RPL21	ribosomal protein	5502	(heparan sulfate
RPL22	ribosomal protein		cell surface-
RPL28	ribosomal protein	SDC4	fibroglycan)
RPL31	ribosomal protein	5004	(amphiglycan,
RPL38	ribosomal protein L38	SDFR1	stromal cell derived factor
RPL5	ribosomal protein	SEC11L1	receptor 1 SEC11-like 1 (S
RPN1	ribophorin I		cerevisiae)
RPS12	ribosomal protein S12	SEMA4F	sema domain, immunoglobulin
RPS19	ribosomal protein S19		domain (Ig), transmembrane
RPS21	ribosomal protein S21		domain (TM) and short cytoplasmic
RPS27A	ribosomal protein S27a		domain, (semaphorin) 4F

SEPT11	septin 11	SPATA2	spermatogenesis
SERINC 3	serine incorporator 3	L SRR	associated 2-like serine racemase
SF3A1	splicing factor 3a, subunit 1, 120kDa	SSRP1	structure specific recognition protein
SFN	stratifin		1
SFRS14	splicing factor, arginine/serine-rich 14	\$113	suppression of tumorigenicity 13 (colon carcinoma)
SFXN3	sideroflexin 3		(Hsp/0 interacting
SHOX2	short stature	STC1	stanniocalcin 1
CIDT5	homeobox 2	STCH	stress 70 protein
51115	mating type information regulation 2	STK24	chaperone, microsome- associated, 60kDa
	homolog) 5 (S.	511(2+	kinase 24 (STE20
SIX1	sine oculis homeobox homolog 1	STOML1	homolog, yeast) stomatin (EPB72)- like 1
	(Drosophila)	STX12	syntaxin 12
SKP1A	S-phase kinase-	STX6	syntaxin 6
	associated protein	STX7	syntaxin 7
SI C25A	IA (p19A) solute carrier	STYK1	serine/threonine/tyr
37	family 25, member 37	SVIL	osine kinase 1 supervillin
SLC26A	solute carrier	SYBL1	synaptobrevin-like
4	family 26, member		1
SI C35E1	4 solute carrier	racsid 2	calcium signal
SLCJJLI	family 35. member	-	transducer 2
	E1	TAF1A	TATA box binding
SMAD5	SMAD, mothers		protein (TBP)-
	against DPP homolog 5		RNA polymerase I,
	(Drosophila)		A, 48kDa
SMARC	SWI/SNF related,	IBXA2R	thromboxane A2
D3	actin dependent	TDP1	tvrosvl-DNA
	regulator of		phosphodiesterase
	chromatin,		1
	subfamily d,	TERF1	telomeric repeat
GMG	member 3		binding factor
SMS	spermine synthase		(NIMA- interacting) 1
SNN	stannin	TES	testis derived
SOD2	superoxide		transcript (3 LIM
	aismutase 2, mitochondrial		domains)
SP110	SP110 nuclear	TEX261	testis expressed
51 110	body protein	TGERRI	transforming
SP2	Sp2 transcription	I OF DR2	growth factor. beta
	factor		receptor II

	(70/80kDa)	UBE2NI	ubiquitin-
			conjugating
TGIF2	TGFB-induced		enzyme E2N-like
10112	factor 2 (TALE	UFM1	ubiquitin-fold
	family homeobox)		modifier 1
THAP1	THAP domain	UIMCI	ubiquitin
	containing,		interaction motif
	apoptosis	LIOCAR	containing 1
	associated protein	UQURB	avtochrome c
	1		reductase binding
TIMM44	translocase of inner		nrotein
	mitochondrial	VAMP3	vesicle-associated
	membrane 44	V 1 11/11 0	membrane protein
	homolog (yeast)		3 (cellubrevin)
TIMP3	TIMP	VAPA	VAMP (vesicle-
	metallopeptidase		associated
	inhibitor 3 (Sorsby		membrane
	fundus dystrophy,		protein)-associated
	pseudoinflammator		protein A, 33kDa
TM70E1	y)	VPS24	vacuolar protein
IM/SF1	transmemorane /		sorting 24 (yeast)
	superfamily member 1	WDR46	WD repeat domain
	(upregulated in		46
	(upregulated in kidney)	WDR48	WD repeat domain
TMFFF1	transmembrane		48
	protein with EGF-	XPO6	exportin 6
	like and two	XPO7	exportin 7
	follistatin-like	YRDC	vrdC domain
	domains 1		containing (E.coli)
TNFRSF	tumor necrosis	YWHAZ	tyrosine 3-
1A	factor receptor		monooxygenase/tr
	superfamily,		yptophan 5-
	member 1A		monooxygenase
TOB1	transducer of		activation protein,
	ERBB2, 1		zeta polypeptide
TOM1L1	target of myb1-like	ZBED1	zinc finger, BED-
	1 (chicken)		type containing 1
TPI1	triosephosphate	ZCCHCI	zinc finger, CCHC
	isomerase 1	0	domain containing
TPK1	thiamin	70010	
	pyrophosphokinase	ZCCHC ²	zinc finger, CCHC
	l tuan anna ain 1		domain containing
IPMI	(alpha)	ZEANDI	4 zino fingon AN1
TTC4	(alplia)	ZFANDI	tune domain 1
1104	repeat domain 4	7FP 37	zinc finger protein
THI P3	tubby like protein	21157	37 homolog
TOLIS	3		(mouse)
TWISTN	J TWIST neighbor	ZNF177	zinc finger protein
B	i wisi neigheor		177
TXK	TXK tyrosine	ZNF227	zinc finger protein
	kinase		227
TXNDC	thioredoxin	ZNF230	zinc finger protein
	domain containing		230

ZNF306	zinc finger protein	ZNF675	zinc finger protein
	306		675
ZNF330	zinc finger protein	ZWINT	ZW10 interactor
	330	ZXDC	ZXD family zinc
ZNF505	zinc finger protein		finger C
	505		imber c
ZNF557	zinc finger protein		
	557		

